
تعداد نشریات | 31 |
تعداد شمارهها | 355 |
تعداد مقالات | 3,429 |
تعداد مشاهده مقاله | 4,341,249 |
تعداد دریافت فایل اصل مقاله | 5,041,507 |
تجزیه و تحلیل بیان ژنهای گیاه برنج تحت تنش شوری و شناسایی نقش عناصر cis راه انداز ژن TPC1 مسئول پیام رسانی دوربرد در تحمل شوری | ||
تولید و ژنتیک گیاهی | ||
دوره 3، شماره 2 - شماره پیاپی 4، شهریور 1401، صفحه 291-304 اصل مقاله (1.57 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.34785/J020.2022.010 | ||
نویسندگان | ||
شادی حیدری1؛ پیوند حیدری1؛ بهارک حیدری* 2 | ||
1دانشآموخته دکتری، گروه اصلاح نباتات، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران | ||
2استادیار، گروه کامپیوتر، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران | ||
چکیده | ||
شوری خاک یکی از محدودیتهای عمده تولید برنج در سراسر جهان بهویژه در نواحی ساحلی است. حساسیت یا تحمل گیاه برنج به شوری به عملکرد هماهنگ ژنهای پاسخدهنده به تنش وابسته است. به منظور بررسی ژنهای مرتبط با پاسخ تنش، تجزیه و تحلیل برچسبهای توالی بیان شده از کتابخانههای برنج متحمل و حساس به شوری با 4571 و 3823 توالی EST از بانک اطلاعاتی دانشگاه هاروارد انجام شد. برای پیدا کردن شباهت بین دو کتابخانه، توالیهای EST با استفاده از نرم افزار EGassembler همگذاری شدند. یونیژنها با استفاده از بلاست X توسط نرم افزارCLCbio در مقابل پروتئینهای غیر تکراری بانک ژن آنالیز شدند. برای شناسایی ژنها با بیان افتراقی بین کتابخانهها، نرم افزار آماری IDEG6 و آماره Audic-Claverie استفاده شد. برای دستهبندی کاتالوگهای عملکردی، ابزار طبقهبندی مقایسهای GoMapMan استفاده شد. اختلاف آماری معنیدار بین ژنهای دو کتابخانه در 9 گروه کارکردی مشاهده شد. نتایج اهمیت ژنهای دخیل در3 گروه کارکردی کلیدی نقل و انتقال، اجزای تشکیلدهنده مسیر پیامرسانی دوربرد و تنظیم اپیژنتیک را در رقم متحمل به شوری مشخص و TPC1 را به عنوان نامزد احتمالی برای اصلاح مولکولی ژنوتیپهای برنج حساس به شوری معرفی میکند. عملکرد عناصر cis-acting ناحیه پروموتر این ژن، شبکه تنظیمکننده سازوکارهای پاسخ تنش شوری را مشخص میکند که برای درک بهتر مدیریت تنش در تحمل شوری گیاه برای کنار آمدن با پیامدهای تغییر اقلیم و سایر چالشهای محیطی ضروری خواهد بود. بهبود سیستم پاسخ به تنش و سازگاری با آنها در گیاهان میتواند در رسیدن به اهداف کشاورزی پایدار و امنیت غذایی در سراسر جهان کمک کند. | ||
کلیدواژهها | ||
برچسبهای توالی بیان شده (EST)؛ بیان ژن؛ پروتئین کانال دو حفرهای کلسیم(TPC)؛ شوری خاک؛ نواحی تنظیمی پروموتر | ||
مراجع | ||
Alet, A., Sanchez, D. and Cuevas, J. 2012. New insights into the role of spermin in A. thaliana under longsalt stress. Plant Science, 182: 94-100. Bailey, M., Srivastava, A. and Conti, L. 2015. Stability of (SUMO) proteases OTS1 modulates salicylic acid signalling and SUMO1/2 conjugation in Arabidopsis thaliana. experimental botany, 67(1): 353-363. Barak, S., Tobin, E.M., Andronis, C., Sugano, S. and Green, R.M. 2000. All in good time: The Arabidopsis circadian clock. Trends in Plant Science, 5(12): 517-522. Ben Rejeb, K., Benzarti, M. and Debez, A. 2015. NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in A. thaliana. plant physiology, 174: 5-15. Chawla, S., Jain, S. and Jain, V. 2013. Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of (O. sativa L.). Plant Biochemistry and Biotechnology, 22(1): 27-34. Chen, H., Su, C. and Lin, C. 2010. Expression of potato cysteine protease SPCP2 altered developmental characteristics and stress responses in transgenic Arabidopsis. plant physiology, 167(10): 838-847. Chen, L., Ren, F. and Zhong, H. 2010. Identification and expression analysis of genes in response to high-salinity and drought stresses in Brassica napus. Acta Biochimica et Biophysica Sinica, 42(2): 154-164. Chen, X.S., Lu, L., Mayer, K.S., Scalf, M., Qian, S.M. and Lomax, A. 2016. Powerdress interacts with HDA9 to promote aging in Arabidopsis. eLife, 5: e17214. Choi, W.G., Toyota, M. and Kim, S.H. 2014. Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proceedings of the National Academy of Sciences, 111(17): 6497-6502. Droillard, M.J., Boudsocq, M., Barbier-Brygoo, H. and Lauriere, C. 2004. Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of A. thaliana: activation by hypoosmolarity and negative role in hyperosmolarity tolerance. FEBS Letters, 574(1-3): 42-48. Ferreira, L.J., Azevedo, V., Maroco, J., Oliveira, M.M. and Santos, A.P. 2015. Salt tolerant and sensitive rice varieties display differential methylome flexibility under salt stress. PLoS ONE, 10(5), e124060. Fujita, Y., Fujita, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2011.ABA-mediated transcriptional regulation in response to osmotic stress in plants. plant research, 124(4): 509-525. Gilmartin, P.M., Sarokin, L., Memelink, J. and Chua, N.H. 1990. Molecular light switches for plant genes. Plant Cell, 2(5): 369-378. Goldsbrough, A.P., Albrecht, H. and Stratford, R. 1993. Salicylic acid-inducible binding of a tobacco nuclear protein to a sequence which is conserved among stress-inducible genes. The Plant Journal, 3(4): 563-571. Heidari, S., Heidari, P. and Heidari, B. 2021. A survey of evolutionary changes of fatty acids and storage proteins in three Brassica species by comparative genomics method. NCMBJ, 12(45): 27-38. (In Persian). Heidari, Sh. and Heidari, P. 2022. Evolutionary mechanisms underlying secondary metabolite diversity of the three Brassica species using insilico comparative analysis of the related genes. Crop biotechnology, 10(4): 23-36. (In Persian). Heidari, Sh., Heidari, P., Azizinezhad, R., Etminan, A. and Khosroshahli, M. 2020. Assessment of genetic variability, heritability and genetic advance for agro-morphological and some in-vitro related-traits in durum wheat. Bulgarian Journal of Agricultural Science, 26(1): 120-127. Hieng, B., Ugrinoviè, K., Sustar-Vozliè, J. and Kidriè, M. 2004. Different classes of proteases are involved in the response to drought of Phaseolus vulgaris L. cultivars differing in sensitivity. plant physiology, 161(5): 519-530. Islam, M.O., Kato, H., Shima, S., Tezuka, D., Matsui, H. and Imai. R. 2019. Functional identification of a rice trehalase gene involved in salt stress tolerance. Gene, 685: 42-49. Jiang, D. and Berger, F. 2017. DNA replication–coupled histone modification maintains Polycomb gene silencing in plants. Science, 35: 1146-1149. Kaur, A., Pati, P.K., Pati, A.M. and Nagpal, A.K. 2017. In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of A.is thaliana and O. sativa. PloS one, 12(9): e0184523. Kerr, T.C. 2018. Ectopic expression of two AREB/ABF orthologs increases drought tolerance in cotton. Plant, Cell and Environment, 41: 898-907. Khodary, S.E.A. 2004. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt-stressed maize plants. Agriculture and Biology, 6: 5-8. Kubala, S., Wojtyla, L., Quinet, M., Lechowska, K., Lutts, S. and Garnczarska, M. 2015. Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of B. napus germination under salinity stress. plant physiology, 183: 1-12. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P. and Rombauts, S. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic acids research, 30(1): 325-7. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 10(8): 1391-406. Luo, M., Wang, Y.Y., Liu, X., Yang, S., Lu, Q., Cui, Y. and Wu, K. 2012. HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. Experimental Botany, 63(8): 3297-3306. Ma, L., Zhang, H. and Sun, L. 2012. NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. Experimental Botany, 63(1): 305-317. Masoudi Nejad, A., Tonomura, K. and Kawashima, Sh. 2006. EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic acids research, 34: 459-462. McGinnis, S. and Madden, T.L. 2004. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic acids research, 32: 20-25. Miller, G., Schlauch, K. and Tam, R. 2009. The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Science Signaling, 2(84): 1-11. Mizoguchi, T., Irie, K., Hirayama, T., Hayashida, N., Yamaguchi-Shinozaki, K. and Matsumoto, K. 1996. A gene encoding a MAPKKK is induced simultaneously with genes for a MAPK and an S6 RP kinase by touch, cold and water stress in A. thaliana. Proceedings of the National Academy of Sciences, 93(2):765-769. Munnik, T., Ligterink, W., Calderini, O. and Hirt, H. 1999. Distinct osmosensing protein kinase pathways are involved in signaling moderate and severe hyperosmos stress. The Plant Journal, 20(4): 381-388. Ramsak, Z., Baebler, S. and Rotter, A. 2014. GoMapMan: integration, consolidation and visualization of plant gene annotations within the MapMan ontology. Nucleic acids research, 42: 1167-1175. Reese, M.G. 2001. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Computational Chemistry, 26(1): 51-56. Romualdi, C., Bortoluzzi, S., d’ Alessi, F. and Danieli, G.A. 2003. IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiological Genomics, 12: 159-162. Roy, S. 2016. Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant signaling and behavior, 11(1): e1117723. Schaffer, M.A. and Fischer, R.L. 1990. Transcriptional activation by heat and cold of a thiol protease gene in tomato. plant physiology, 93(4): 1486-1491. Seemann, J.R. and Critchley, C. 1985. Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta, 164(2): 151-162. Tester, M. and Davenport, R. 2003. Na+ Tolerance in Plants. Annals of Botany, 91(5): 503-527. Ullah, F., Xu, Q., Zhao, Y. and Zhou, D.X. 2021. Histone deacetylase HDA710 controls salt tolerance by regulating ABA signaling in rice. Integrative Plant Biology, 63(3): 451-467. Vassilev, D., Leunissen, J. and Atanassov, A. 2005. Application of bioinformatics in plant breeding. Biotechnology and Biotechnological Equipment, 19: 139-152. Wang, J., Ding, H., Zhang, A., Ma, F., Cao, J. and Jiang, M. 2010. A novel MAPK gene in maize, ZmMPK3, is involved in response to diverse environmental cues. Integrative Plant Biology, 52(5): 442-452. Wang, W., Huang, F., Qin, Q., Zhao, X. and Fu, B. 2015. Comparative analysis of DNA methylation changes in two rice genotypes under salt stress. Biophysical Research Communications, 465(4): 790-796. Wilczek, C., Chayka, O., Plachetka, A. and Klempnauer, K.H. 2009. Myb-induced chromatin remodeling at a dual enhancer/promoter element involves non-coding rna transcription and is disrupted by oncogenic mutations of v-myb. Biological Chemistry, 284(51): 35314-35324. Wu, Y. and Cosgrove, D.J. 2000. Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. Experimental Botany, 51(350): 1543-1553. Xiang, Y., Lu, Y.H., Song, M., Wang, Y., Xu, W., Wu, L. and Ma, Z. 2015. Overexpression of a T. aestivum (TaCRT1) improves salinity tolerance in Tobacco. PLOS ONE, 10(10): e0140591. Xiong, L. and Yang, Y. 2003. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible MAPK. The Plant Cell, 15(3): 745-759. Yamauchi, T., Yoshioka, M., Fukazawa, A., Mori, H., Nishizawa, N.K., Tsutsumi, N., Yoshioka, H. and Nakazono, M. 2017. An NADPH Oxidase RBOH Functions in Rice Roots during Lysigenous Aerenchyma Formation under Oxygen-Deficient Conditions. The Plant cell, 29(4): 775-790. Yeo, A.R., Caporn, S.M. and Flowers, T.J. 1985.The effect of salinity upon photosynthesis in rice gas exchange by individual leaves in relation to their salt content. Experimental Botany, 36(8): 1240-1248. Zhong, X., Zhang, H., Zhao, Y., Sun, Q., Hu, Y. and Peng, H. 2013. The rice NAD (+)-dependent histone deacetylase OsSRT1 targets preferentially to stress- and metabolism-related genes and transposable elements. PLOS ONE, 8: e66807. Zhong, X., Zhang, H., Zhao, Y., Sun, Q., Hu, Y., Peng, H. and Zhou, D.X. 2013. The rice NAD+-dependent histone deacetylase OsSRT1 targets preferentially to stress-and metabolism-related genes and transposable elements. PLoS One, 8(6): e66807. | ||
آمار تعداد مشاهده مقاله: 769 تعداد دریافت فایل اصل مقاله: 481 |