
تعداد نشریات | 31 |
تعداد شمارهها | 334 |
تعداد مقالات | 3,274 |
تعداد مشاهده مقاله | 4,073,563 |
تعداد دریافت فایل اصل مقاله | 4,879,370 |
محیط یادگیری ترکیبی: اثربخشی استفاده همزمان از آزمایشهای واقعی و مجازی بر مهارت استدلال علمی دانشآموزان | ||
تدریس پژوهی | ||
مقاله 6، دوره 11، شماره 2، تیر 1402، صفحه 147-123 اصل مقاله (1.42 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/trj.2023.62850 | ||
نویسندگان | ||
مجتبی جهانی فر* 1؛ امیر مثنوی2 | ||
1استادیار گروه علوم تربیتی، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
2گروه علوم تربیتی، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
چکیده | ||
این مطالعه با هدف بررسی اثر آزمایشهای واقعی، مجازی، و ترکیبی بر تفکر سیستمی شاگردان که به صورت استدلال علّی بروز پیدا میکند، انجام گرفته است. پزوهش به روش کمی و با رویکرد نیمه آزمایشی انجام گرفت. جامعه آماری دانش آموزان پایه یازدهم دوره متوسطه دوم شهر اهواز بودند که نمونه 80 نفری از آنان کاوشگری علمی با موضوع جریان الکتریکی را به سه صورت آزمایش واقعی (24 نفر)، مجازی (28 نفر) ، و ترکیب آن دو (28 نفر) تجربه کردند. یادگیری مفاهیم و مهارت تفکر سیستمی شاگردان به کمک آزمون استاندارد DIRECT قبل و بعد از فعالیت کاوشگری اندازهگیری شد. پاسخها ابتدا کدگذاری، و سپس نمرهگذاری شدند. از تحلیل کواریانس برای مقایسه میانگین گروهها استفاده شد. کاوشگری واقعی (اندازه اثر 54/0) و مجازی (انداز اثر 60/0) تقریبا به یک اندازه باعث یادگیری مفاهیم علمی شدند، اما شاگردان در شرایط ترکیبی (اندازه اثر 79/0) بهتر از شرایط تک آزمایشی یاد میگرفتند. سهم بیشتر نمره شاگردان در هر سه تجربه یادگیری مربوط به سطح دانش امور واقعی و روندی بود و نمره کمتری در سطوح بالای یادگیری مانند استدلال یا تفکر سیستمی داشتند. کاوشگری چه به صورت واقعی، چه مجازی، و چه ترکیبی، به خودی خود نتوانست دانشآموزان را وادار به استدلال منسجم و بازنگری مدل ذهنی خودشان کند. کاوشگری بدون فعالیت مکمل آن یعنی مدلسازی نمیتواند به ارتقا مهارت استدلال شاگردان کمک زیادی کند. پیشنهاد میشود کاوشگری در کلاس درس به صورت ترکیب آزمایش واقعی و مجازی توسط معلمان با رویکرد مبتنی بر مدلسازی انجام بگیرد. | ||
کلیدواژهها | ||
آموزش مجازی؛ آموزش علوم؛ محیط ترکیبی؛ مدلسازی؛ استدلال علّی | ||
مراجع | ||
Alkhaldi, T., Pranata, I., & Athauda, R. I. (2016). A review of contemporary virtual and remote laboratory implementations: observations and findings. Journal of Computers in Education, 3(3), 329–351. https://doi.org/10.1007/s40692-016-0068-z Anderson, L. W., & Bloom, B. S. (2014). A taxonomy for learning, teaching, and assessing : a revision of Bloom’s. In TA - TT - (Pearson ne). Pearson. https://doi.org/LK - https://worldcat.org/title/864384105 Assaraf, O., & Orion, N. (2005). Development of system thinking skills in the context of Earth System education. Journal of Research in Science Teaching, 42, 518–560. https://doi.org/10.1002/tea.20061 Aulia, E. V., Poedjiastoeti, S., & Agustini, R. (2018). The Effectiveness of Guided Inquiry-based Learning Material on Students’ Science Literacy Skills. Journal of Physics: Conference Series, 947(1), 12049. https://doi.org/10.1088/1742-6596/947/1/012049 Blatti, J., Garcia, J., Cave, D., Monge, F., Cuccinello, A., Portillo, J., Juarez, B., Chan, E., & Schwebel, F. (2019). Systems Thinking in Science Education and Outreach toward a Sustainable Future. Journal of Chemical Education, 96. https://doi.org/10.1021/acs.jchemed.9b00318 Bozzo, G., Lopez, V., Couso, D., & Monti, F. (2022). Combining real and virtual activities about electrostatic interactions in primary school. International Journal of Science Education, 44(18), 2704–2723. https://doi.org/10.1080/09500693.2022.2149284 Brinson, J. R. (2015). Learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) laboratories: A review of the empirical research. Computers & Education, 87, 218–237. https://doi.org/https://doi.org/10.1016/j.compedu.2015.07.003 Byrne, J., Heavey, C., & Byrne, P. J. (2010). A review of Web-based simulation and supporting tools. Simulation Modelling Practice and Theory, 18(3), 253–276. https://doi.org/https://doi.org/10.1016/j.simpat.2009.09.013 De Andrade, V., Shwartz, Y., Freire, S., & Baptista, M. (2022). Students’ mechanistic reasoning in practice: Enabling functions of drawing, gestures and talk. Science Education, 106(1), 199–225. https://doi.org/10.1002/sce.21685 De Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and Virtual Laboratories in Science and Engineering Education. Science, 340(6130), 305–308. https://doi.org/10.1126/science.1230579 Dickes, A. C., Sengupta, P., Farris, A. M. Y. V., & Basu, S. (2016). Development of Mechanistic Reasoning and Multilevel Explanations of Ecology in Third Grade Using Agent-Based Models. Science Education, 100(4), 734–776. https://doi.org/https://doi.org/10.1002/sce.21217 Durlak, J. (2009). How to Select, Calculate, and Interpret Effect Sizes. Journal of Pediatric Psychology, 34, 917–928. https://doi.org/10.1093/jpepsy/jsp004 Elmoazen, R., Saqr, M., Khalil, M., & Wasson, B. (2023). Learning analytics in virtual laboratories: a systematic literature review of empirical research. Smart Learning Environments, 10(1), 23. https://doi.org/10.1186/s40561-023-00244-y Engelhardt, P. V., & Beichner, R. J. (2003). Students’ understanding of direct current resistive electrical circuits. American Journal of Physics, 72(1), 98–115. https://doi.org/10.1119/1.1614813 Eshach, H., Lin, T.-C., & Tsai, C.-C. (2018). Misconception of sound and conceptual change: A cross-sectional study on students’ materialistic thinking of sound. Journal of Research in Science Teaching, 55(5), 664–684. https://doi.org/https://doi.org/10.1002/tea.21435 Flegr, S., Kuhn, J., & Scheiter, K. (2023). When the whole is greater than the sum of its parts: Combining real and virtual experiments in science education. Computers & Education, 197, 104745. https://doi.org/https://doi.org/10.1016/j.compedu.2023.104745 Gilissen, M. G. R., Knippels, M.-C. P. J., & van Joolingen, W. R. (2020). Bringing systems thinking into the classroom. International Journal of Science Education, 42(8), 1253–1280. https://doi.org/10.1080/09500693.2020.1755741 Harrison, V., Kemp, R., Brace, N., Kemp, R., & Snelgar, R. (2021). SPSS for Psychologists. In SPSS for Psychologists. Red Globe Press. https://doi.org/10.1007/978-1-137-57923-2 Haskel-Ittah, M. (2023). Explanatory black boxes and mechanistic reasoning. Journal of Research in Science Teaching, 60(4), 915–933. https://doi.org/https://doi.org/10.1002/tea.21817 Hedges, L. V. (1981). Distribution Theory for Glass’s Estimator of Effect Size and Related Estimators. Journal of Educational Statistics, 6(2), 107–128. https://doi.org/10.2307/1164588 Hmelo-Silver, C. E., Liu, L., Gray, S., & Jordan, R. (2015). Using representational tools to learn about complex systems: A tale of two classrooms. Journal of Research in Science Teaching, 52(1), 6–35. https://doi.org/https://doi.org/10.1002/tea.21187 Inkinen, J., Klager, C., Juuti, K., Schneider, B., Salmela-Aro, K., Krajcik, J., & Lavonen, J. (2020). High school students’ situational engagement associated with scientific practices in designed science learning situations. Science Education, 104(4), 667–692. https://doi.org/https://doi.org/10.1002/sce.21570 Iseki, H. (2020). Cohen’s kappa statistics as a convenient means to identify accurate SARS-CoV-2 rapid antibody tests. MedRxiv, 2020.06.13.20130070. https://doi.org/10.1101/2020.06.13.20130070 Jahanifar, M., & Hormozi Nejad, M. (2023). Improving students’ causal reasoning skills with the computer modelling. Technology of Education Journal (TEJ), 17(3), 607–620. https://doi.org/10.22061/tej.2023.9401.2841 Jiménez-Aleixandre, M. P., Crujeiras, B., Taber, K. S., & Akpan, B. (2017). Science education. New directions in mathematics and science education: Vol. null (null (ed.)). Kang, H., Thompson, J., & Windschitl, M. (2014). Creating Opportunities for Students to Show What They Know: The Role of Scaffolding in Assessment Tasks. Science Education, 98. https://doi.org/10.1002/sce.21123 Kapici, H. O., Akcay, H., & de Jong, T. (2019). Using Hands-On and Virtual Laboratories Alone or Together―Which Works Better for Acquiring Knowledge and Skills? Journal of Science Education and Technology, 28(3), 231–250. https://doi.org/10.1007/s10956-018-9762-0 Kind, P., & Osborne, J. (2017). Styles of Scientific Reasoning: A Cultural Rationale for Science Education? Science Education, 101(1), 8–31. https://doi.org/10.1002/sce.21251 Lazenby, K., & Becker, N. M. (2021). Evaluation of the students’ understanding of models in science (SUMS) for use in undergraduate chemistry. Chem. Educ. Res. Pract., 22(1), 62–76. https://doi.org/10.1039/D0RP00084A López, V., & Pintó, R. (2017). Identifying secondary-school students’ difficulties when reading visual representations displayed in physics simulations. International Journal of Science Education, 39(10), 1353–1380. https://doi.org/10.1080/09500693.2017.1332441 Margunayasa, I. G., Dantes, N., Marhaeni, A., & Suastra, I. W. (2019). The Effect of Guided Inquiry Learning and Cognitive Style on Science Learning Achievement. International Journal of Instruction. Momsen, J., Speth, E. B., Wyse, S., & Long, T. (2022). Using Systems and Systems Thinking to Unify Biology Education. CBE—Life Sciences Education, 21(2), es3. https://doi.org/10.1187/cbe.21-05-0118 Nguyen, H., & Santagata, R. (2021). Impact of computer modeling on learning and teaching systems thinking. Journal of Research in Science Teaching, 58(5), 661–688. https://doi.org/10.1002/tea.21674 Osborne, J., & Lederman, N. G. (2014). Handbook of Research on Science Education: Vol. null (null (ed.)). Perkins, K., Adams, W., Dubson, M., Finkelstein, N., Reid, S., Wieman, C., & LeMaster, R. (2006). PhET: Interactive Simulations for Teaching and Learning Physics. The Physics Teacher, 44, 18–23. https://doi.org/10.1119/1.2150754 Plass, J. L., Homer, B. D., & Hayward, E. O. (2009). Design factors for educationally effective animations and simulations. Journal of Computing in Higher Education, 21(1), 31–61. https://doi.org/10.1007/s12528-009-9011-x Raven, S., & Wenner, J. A. (2023). Science at the center: Meaningful science learning in a preschool classroom. Journal of Research in Science Teaching, 60(3), 484–514. https://doi.org/https://doi.org/10.1002/tea.21807 S., S., Hmelo-Silver, C. E., Jordan, R., Eberbach, C., & Sinha, S. (2017). Systems learning with a conceptual representation: A quasi-experimental study. Instructional Science, 45(1), 53. https://doi.org/10.1007/s11251-016-9392-y Sadideen, H., Hamaoui, K., Saadeddin, M., & Kneebone, R. (2012). Simulators and the simulation environment: Getting the balance right in simulation-based surgical education. International Journal of Surgery (London, England), 10. https://doi.org/10.1016/j.ijsu.2012.08.010 Sarabando, C., Cravino, J. P., & Soares, A. A. (2014). Contribution of a Computer Simulation to Students’ Learning of the Physics Concepts of Weight and Mass. Procedia Technology, 13, 112–121. https://doi.org/https://doi.org/10.1016/j.protcy.2014.02.015 Sjøberg, M., Furberg, A., & Knain, E. (2023). Undergraduate biology students’ model-based reasoning in the laboratory: Exploring the role of drawings, talk, and gestures. Science Education, 107(1), 124–148. https://doi.org/https://doi.org/10.1002/sce.21765 Stanny, C. J. (2016). Reevaluating Bloom’s Taxonomy: What Measurable Verbs Can and Cannot Say about Student Learning. Education Sciences, 6(4). https://doi.org/10.3390/educsci6040037 Tabachnick, B. G., & Fidell, L. S. (2019). Using multivariate statistics. Pearson. http://queens.ezp1.qub.ac.uk/login?url=http://ebookcentral.proquest.com/lib/qub/detail.action?docID=5581921 Tytler, R., Prain, V., Aranda, G., Ferguson, J., & Gorur, R. (2020). Drawing to reason and learn in science. Journal of Research in Science Teaching, 57(2), 209–231. https://doi.org/https://doi.org/10.1002/tea.21590 Usman, M., Suyanta, & Huda, K. (2021). Virtual lab as distance learning media to enhance student’s science process skill during the COVID-19 pandemic. Journal of Physics: Conference Series, 1882(1), 12126. https://doi.org/10.1088/1742-6596/1882/1/012126 Wang, T.-L., & Tseng, Y.-K. (2016). The Comparative Effectiveness of Physical, Virtual, and Virtual-Physical Manipulatives on Third-Grade Students’ Science Achievement and Conceptual Understanding of Evaporation and Condensation. International Journal of Science and Mathematics Education, 16. https://doi.org/10.1007/s10763-016-9774-2 Widiyatmoko, A. (2018). The Effectiveness of Simulation in Science Learning on Conceptual Understanding : A Literature Review. Widodo, W., Rosdiana, L., Fauziah, A. M., & Suryanti. (2018). Revealing Student’s Multiple-Misconception on Electric Circuits. Journal of Physics: Conference Series, 1108(1), 12088. https://doi.org/10.1088/1742-6596/1108/1/012088 Wilcox, R. R. (2022). Chapter 12 - ANCOVA (R. R. B. T.-I. to R. E. and H. T. (Fifth E. Wilcox (ed.); pp. 773–826). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-820098-8.00018-X Wörner, S., Becker, S., Küchemann, S., Scheiter, K., & Kuhn, J. (2022). Development and validation of the ray optics in converging lenses concept inventory. Phys. Rev. Phys. Educ. Res., 18(2), 20131. https://doi.org/10.1103/PhysRevPhysEducRes.18.020131 Wörner, S., Kuhn, J., & Scheiter, K. (2022). The Best of Two Worlds: A Systematic Review on Combining Real and Virtual Experiments in Science Education. Review of Educational Research, 92(6), 911–952. https://doi.org/10.3102/00346543221079417 Xu, X., Allen, W., Miao, Z., Yao, J., Sha, L., & Chen, Y. (2018). Exploration of an interactive “Virtual and Actual Combined” teaching mode in medical developmental biology. Biochemistry and Molecular Biology Education, 46. https://doi.org/10.1002/bmb.21174 Zacharia, Z., & Michael, M. (2016). Using Physical and Virtual Manipulatives to Improve Primary School Students’ Understanding of Concepts of Electric Circuits (pp. 125–140). https://doi.org/10.1007/978-3-319-22933-1_12 | ||
آمار تعداد مشاهده مقاله: 446 تعداد دریافت فایل اصل مقاله: 300 |