
تعداد نشریات | 31 |
تعداد شمارهها | 334 |
تعداد مقالات | 3,274 |
تعداد مشاهده مقاله | 4,073,506 |
تعداد دریافت فایل اصل مقاله | 4,879,349 |
تاثیر تغییرات پوشش گیاهی بر شدت جزیره گرمایی در شهر (نمونه موردی: کلانشهر کرج) | ||
فصلنامه مطالعات شهری | ||
مقاله 1، دوره 13، شماره 52، آبان 1403، صفحه 3-16 اصل مقاله (2.6 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/urbs.2024.140477.5005 | ||
نویسندگان | ||
فاطمه قربانی1؛ حسن سجادزاده* 2 | ||
1دانشآموخته کارشناسی ارشد، گروه شهرسازی، دانشکده هنر و معماری، دانشگاه بوعلی سینا، همدان، ایران. | ||
2استاد گروه شهرسازی، دانشکده هنر و معماری، دانشگاه بوعلی سینا، همدان، ایران. | ||
چکیده | ||
با توجه به تغییرات اقلیمی و همچنین توسعه های شهری بدون توجه به کیفیت زیست محیطی، شکلگیری جزیره گرمای شهری به یکی از چالشهای جدی عصر حاضر تبدیل شده است. هدف عمده این پژوهش، تحلیل وضعیت پوشش گیاهی و دمای سطح زمین برای بررسی شکل گیری جزایر حرارتی شهری در شهر کرج است. به این منظور و در راستای آشکارسازی تأثیر فضاهای سبز در محیطهای حرارتی شهر کرج، از دادههای سنجش از دور برای استخراج فضاهای سبز، دمای سطح زمین و پوشش زمین استفاده شده است. دمای سطح زمین با استفاده از تصاویر مودیس محاسبه شد. تغییرات پوشش گیاهی با استفاده از اطلاعات برداشت شده توسط سنجندههای مربوطه ماهواره لندست 7 و 8 مربوط به سال های 2001 و 2021 استخراج شده و بعد از اعمال تصحیحات لازم و بررسی تصاویر، اقدام به شناسایی تغییرات کاربری اراضی و نوع تغییرات آن گردید. نتایج بررسیها نشان داد که اراضی بایر پیرامون شهر به صورت پیوسته دارای بالاترین دما و لکه های گرم هستند و محدودههای دمایی بسیار گرم را تشکیل میدهند. در محدوده مسکونی شهر نیز جزایر حرارتی بر بافت فرسوده و محدوده های متراکم منطبق است. همچنین تحلیل و بررسی نقشههای دمای سطح زمین نشاندهنده افزایش دمای سطح در شهر کرج است. درعین حال، واکاوی نقشهها حکایت از رابطه قوی بین پوشش گیاهی و دمای سطح زمین در کلانشهر کرج دارد. نقشههای کاربری اراضی نیز نشان از کاهش مساحت پوششگیاهی و افزایش کاربری انسان ساخت دارد. این موضوع به طور واضح نشاندهنده این است که مهم ترین عامل در گسترش جزایر گرمایی و افزایش دما در بازه زمانی مورد بررسی، کمبود پوششگیاهی بوده است. در نتیجه فضاهای سبز و پوشش گیاهی در شهرها به طور چشمگیری سبب تعدیل جزایر حرارتی شهری هستند. به این صورت که نواحی همچون اراضی بایر و نواحی دارای پوشش گیاهی کمتر، دارای دمای بیشتری نیز هستند. بنابراین گسترش بام سبز و استفاده از پوشش گیاهی سازگار با اقلیم هر منطقه به عنوان راه حلی برای کاهش جزیره گرمایی پیشنهاد میشود. | ||
کلیدواژهها | ||
جزایر حرارتی شهری؛ پوشش گیاهی؛ تصاویر ماهواره ای؛ کرج | ||
مراجع | ||
Abdi, k., & Kamiabi, S., & Zand Moghadam, m. (2021). An Investigation into the Role of Urban Green Space Vegetation on the Temperature Changes Trend of the Urban Environments Area (Case Study: Sari City). Journal of Environmental Science and Technology, 23(2 (105)), 135-146. https://doi.org/10.30495/jest.2021.38883.4423 [in Persian] Aflaki, A., & Mirnezhad, M., & Ghaffarianhoseini, A., & Ghaffarianhoseini, A., & Omrany, H., & Wang, Z.-H., & Akbari, H. (2017). Urban heat island mitigation strategies: a state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities, 62, 131-145. https://doi.org/10.1016/j.cities.2016.09.003 akbari, D., Moradizadeh, M., & Akbari, M. (2020). Land Use Changes and Urban Development Simulation Using Neural Network and Markov Chain Cellular Automata. Research and Urban Planning, 10(39), 157-170. https://jupm.marvdasht.iau.ir/author.index?vol=0&vl=All%20Volumes%20&lang=en [in Persian] Al-Saadi, L.M., & Jaber, S.H., & Al-Jiboori. M.H. (2020). Variation of urban vegetation cover and its impact on minimum, and maximum heat islands, Urban Climate. https://doi.org/10.1016/j.uclim.2020.100707 Asadi, S., & Sharghi, A. (2018). climate resilience, the future challenge of Iranian architecture. Conference: international conference on civil engineering, architecture and urban management in Iran, Iran. https://www.researchgate.net/publication/328007276_climate_resilience_the_future_challenge_of_Iranian_architecture [in Persian] Asadi, Y., & Hamzeh, S., & Kiavarz, M. (2020). Investigate the effects of land Use and vegetation on urban heat islands using landscape measurements (Case Study: region 6 of Tehran). H uman Geography Research Quarterly, 52(2), 759-773. https://doi.org/10.22059/jhgr.2020.290775.1008022 [in Persian] Asghari, S., & Emami, H. (2019). Monitoring the earth surface temperature and relationship land use with surface temperature using of OLI and TIRS Image. Journal of Applied researches in Geographical Sciences, 19(53),195-215. https://doi.org/10.29252/jgs.19.53.195 [In Persian] Bhargava, A., Lakmini, S., & Bhargava, S. (2017). Urban heat island effect: It’s relevance in urban planning. J. Biodivers. Endanger. Species, 5(187), 2020. https://doi.org/10.4172/2332-2543.1000187 Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113(5), 893-903. https://doi.org/10.1016/j.rse.2009.01.007 Colunga, M. L., Cambrón-Sandoval, V. H., Suzán-Azpiri, H., Guevara-Escobar, A., & Luna-Soria, H. (2015). The role of urban vegetation in temperature and heat island effects in Querétaro city, Mexico. Atmósfera, 28(3), 205-218. https://doi.org/10.20937/ATM.2015.28.03.05 Dehghan, M. (2003). Urban Heat Islands, an example of climate change, Journal: Growth of Geography Education, 65, 28-35. https://ensani.ir/fa/article/146765/جزایر-گرمایی-شهری-نمونه-ای-از-تغییر-اقلیم [in Persian] Deilami, K., Kamruzzaman, M., & Hayes, J. F. (2016). Correlation or causality between land cover patterns and the urban heat island effect? Evidence from Brisbane, Australia. Remote Sensing, 8(9), 716. https://doi.org/10.3390/rs8090716 Duncan, J. M. A., Boruff, B., Saunders, A., Sun, Q., Hurley, J., & Amati, M. (2019). Turning down the heat: An enhanced understanding of the relationship between urban vegetation and surface temperature at the city scale. Science of the Total Environment, 656, 118-128. https://doi.org/10.1016/j.scitotenv.2018.11.223 Gohain, K. J., Mohammad, P., & Goswami, A. (2021). Assessing the impact of land use land cover changes on land surface temperature over Pune city, India. Quaternary International, 575, 259-269.. https://doi.org/10.1016/j.quaint.2020.04.052 Grover, A., & Singh, R. B. (2015). Analysis of urban heat island (UHI) in relation to normalized difference vegetation index (NDVI): A comparative study of Delhi and Mumbai. Environments, 2(2), 125-138. https://doi.org/10.3390/environments2020125 Guha, S., Govil, H., Dey, A., & Gill, N. (2018). Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. European Journal of Remote Sensing, 51(1), 667-678. https://doi.org/10.1080/22797254.2018.1474494 Guo, G., Wu, Z., Xiao, R., Chen, Y., Liu, X., & Zhang, X. (2015). Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landscape and Urban Planning, 135, 1-10. https://doi.org/10.1016/j.landurbplan.2014.11.007 Hejazi, R., & Abadi, P. (2002). The Effect of Plants on Ambient Temprature (Case Study: Taleghani Park). Journal of Environmental Science and Technology, 4(12), 45-83. https://www.sid.ir/en/journal/ViewPaper.aspx?id=109234 Jabbar, M., & Yusoff, M. M. (2022). Assessing the spatiotemporal urban green cover changes and their impact on land surface temperature and urban heat island in Lahore (Pakistan). Geography, Environment, Sustainability, 15(1), 130-140.http:// doi.org/10.24057/2071-9388-2021-005 Jamei, Y., Rajagopalan, P., & Sun, Q. C. (2019). Spatial structure of surface urban heat island and its relationship with vegetation and built-up areas in Melbourne, Australia. Science of the total environment, 659, 1335-1351. https://doi.org/10.1016/j.scitotenv.2018.12.308 Jumari, N. A. S. K., Ahmed, A. N., Huang, Y. F., Ng, J. L., Koo, C. H., Chong, K. L., ... & Elshafie, A. (2023). Analysis of urban heat islands with landsat satellite images and GIS in Kuala Lumpur Metropolitan City. Heliyon, 9(8). https://doi.org/10.1016/j.heliyon.2023.e18424 Karimi, A., Mohammad, P., Gachkar, S., Gachkar, D., García-Martínez, A., Moreno-Rangel, D., & Brown, R. D. (2021). Surface urban heat island assessment of a cold desert city: a case study over the Isfahan Metropolitan Area of Iran. Atmosphere, 12(10), 1368. https://doi.org/10.3390/atmos12101368 Karimi, A., Mohammad, P., García-Martínez, A., Moreno-Rangel, D., Gachkar, D., & Gachkar, S. (2023). New developments and future challenges in reducing and controlling heat island effect in urban areas. Environment, Development and Sustainability, 25(10), 10485-10531. https://doi.org/10.1007/s10668-022-02530-0 Karimi, A., Sanaieian, H., Farhadi, H., & Norouzian-Maleki, S. (2020). Evaluation of the thermal indices and thermal comfort improvement by different vegetation species and materials in a medium-sized urban park. Energy Reports, 6, 1670-1684. https://doi.org/10.1016/j.egyr.2020.06.015 Karimi Zarchi, A., & Shahhoseini, R. (2019). Measuring the Intensity of the Surface Urban Heat Islands Using Vegetation and Urban Indices(Case Study: The Cities of Rasht and Langroud). Geographical Data, 28(110), 91-106. https://doi.org/10.22131/sepehr.2019.36614 [in Persian] Keerthi Naidu, B. N., & Chundeli, F. A. (2023). Assessing LULC changes and LST through NDVI and NDBI spatial indicators: A case of Bengaluru, India. GeoJournal, 88(4), 4335-4350. http:// doi.org/10.1007/s10708-023-10862-1 Lemonsu, A., Viguie, V., Daniel, M., & Masson, V. (2015). Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Climate, 14, 586-605. https://doi.org/10.1016/j.uclim.2015.10.007 Li, J., Song, C., Cao, L., Zhu, F., Meng, X., & Wu, J. (2011). Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote sensing of environment, 115(12), 3249-3263. https://doi.org/10.1016/j.rse.2011.07.008 Lin, M., Hou, L., Qi, Z., & Wan, L. (2022). Impacts of climate change and human activities on vegetation NDVI in China’s Mu Us Sandy Land during 2000–2019. Ecological Indicators, 142, 109164. https://doi.org/10.1016/j.ecolind.2022.109164 Majnouni-Toutakhane, A., & Ramazani, M. E. (2019). Investigation and evaluation of thermal island status of Tehran metropolis, using satellite imagery. Journal of Natural Environment, 72(1), 29-43.https://doi.org/ 10.22059/JNE.2018.253756.1491 Masoodian, S., & Montazeri, M. (2020). Tempo-spatial behavior of Surface Urban Heat Island of Isfahan Metropolitan Area. Journal of Natural Environmental Hazards, 9(24), 35-46. https://doi.org/10.22111/jneh.2019.28437.1493 Mazidi, A., Omidvar, C., Mozafari, G. A., & Taghizadeh, Z. (2019). Revealing the Changes in Esfahan Heat Island Considering Urban Development. The Journal of Geographical Research on Desert Areas, 7(1), 21-39. https://doi.org/ 20.1001.1.2345332.1398.7.1.2.0 Mohammad, P., & Goswami, A. (2021). Quantifying diurnal and seasonal variation of surface urban heat island intensity and its associated determinants across different climatic zones over Indian cities. GIScience & Remote Sensing, 58(7), 955-981.https://doi.org/10.1080/15481603.2021.1940739 Niliyeh Brojeni, M., & Ahmadi Nadoushan, M. (2019). The relationship between urban vegetation and land surface temperature in Isfahan city using Landsat TM and OLI satellite images and LST index. Environmental Sciences, 17(4), 163-178. https://doi.org/10.29252/envs.17.4.163 [in Persian] Njoku, E. A., & Tenenbaum, D. E. (2022). Quantitative assessment of the relationship between land use/land cover (LULC), topographic elevation and land surface temperature (LST) in Ilorin, Nigeria. Remote Sensing Applications: Society and Environment, 27, 100780. https://doi.org/10.1016/j.rsase.2022.100780 Nse, O. U., Okolie, C. J., & Nse, V. O. (2020). Dynamics of land cover, land surface temperature and NDVI in Uyo City, Nigeria. Scientific African, 10, e00599. https://doi.org/10.1016/j.sciaf.2020.e00599 Pohan, S. A., & Sulistiyono, N. (2023). Analysis of the relationship between urban heat island (UHI) phenomenon and land cover change in Medan city using Landsat satellite imagery. In Journal of Physics: Conference Series (Vol. 2421, No. 1, p. 012017). IOP Publishing. https://doi.org/10.1088/1742-6596/2421/1/012017 Prohmdirek, T., Chunpang, P., & Laosuwan, T. (2020). The relationship between normalized difference vegetation index and canopy temperature that affects the urban heat island phenomenon. Geographia Technica, 15(2), 222-234. http://doi.org/10.21163/GT_2020.152.21 Rahaman, Z. A., Kafy, A. A., Saha, M., Rahim, A. A., Almulhim, A. I., Rahaman, S. N., ... & Al Rakib, A. (2022). Assessing the impacts of vegetation cover loss on surface temperature, urban heat island and carbon emission in Penang city, Malaysia. Building and Environment, 222, 109335. https://doi.org/10.1016/j.buildenv.2022.109335 Rajeshwari, A., & Mani, N. D. (2014). Estimation of land surface temperature of Dindigul district using Landsat 8 data. International journal of research in engineering and technology, 3(5), 122-126. http://doi.org/10.15623/ijret.2014.0305025 Ramezani, S., & Naghibi, F. (2020). Investigation of the vegetation index changes in the formation of the urban heat islands (Case study: Urmia city). Research and Urban Planning, 11(42), 195-206. https://jupm.marvdasht.iau.ir/article_3944.html?lang=en [in Persian] Ridha, S. (2017). Urban heat Island mitigation strategies in an arid climate. In outdoor thermal comfort reacheable, INSA de Toulouse. sensing of environment, Vol. 113, No. 5, pp. 893-903. https://theses.hal.science/tel-01596559/ Rizvi, S. H., Fatima, H., Iqbal, M. J., & Alam, K. (2020). The effect of urbanization on the intensification of SUHIs: Analysis by LULC on Karachi. Journal of Atmospheric and Solar-Terrestrial Physics, 207, 105374. https://doi.org/10.1016/j.jastp.2020.105374 Sadeghinia, A., Alijani, B., & Zeaieanfirouzabadi, P. (2013). Analysis of spatial-temporal structure of the urban heat island in Tehran through remote sensing and geographical information system. Journal of Geography and Environmental hazards, 1(4), 1-17.https://doi.org/10.22067/geo.v1i4.16950 [in Persian] Santhosh, L. G., & Shilpa, D. N. (2023). Assessment of LULC change dynamics and its relationship with LST and spectral indices in a rural area of Bengaluru district, Karnataka India. Remote Sensing Applications: Society and Environment, 29, 100886. https://doi.org/10.1016/j.rsase.2022.100886 Senanayake, I. P., Welivitiya, W. D. D. P., & Nadeeka, P. M. (2013). Remote sensing based analysis of urban heat islands with vegetation cover in Colombo city, Sri Lanka using Landsat-7 ETM+ data. Urban Climate, 5, 19-35. https://doi.org/10.1016/j.uclim.2013.07.004 Shahfahad, Talukdar, S., Rihan, M., Hang, H. T., Bhaskaran, S., & Rahman, A. (2021). Modelling urban heat island (UHI) and thermal field variation and their relationship with land use indices over Delhi and Mumbai metro cities. Environment, Development and Sustainability, 1-29. https:// doi.org/10.1007/s10668-021-01587-7 Shamsipour, A., Azizi, G., Karimi Ahmadabad, M., & Moghbel, M. (2013). Assessing the Physical Surface Temperature Patterns in Urban Environment (Case Study: Tehran). Geography and Environmental Sustainability, 3(1), 67-86. https://ges.razi.ac.ir/?_action=articleInfo&article=207&lang=fa&lang=en [in Persian] Shamsipour, A., & Mahdian Mahforouzi, M., & Akhavan, H., & Hoseinpour, Z. (2013). An Analysis on Diurnal Actions of the Urban Heat Island of Tehran. Journal of Environmental Studies, 38 (4), 45-56. https://doi.org/10.22059/jes.2013.29862 Shen, Z., Xu, X., Sun, Z., Jiang, Y., & Shi, H. (2023). Regional thermal environments (RTEs) and driving forces in six urban agglomerations of China and America. Building and Environment, 235, 110185. https://doi.org/10.1016/j.buildenv.2023.110185 Shirgir, E., Kheyroddin, R., & Behzadfar, M. (2022). Developing a pattern for intervention in urban green infrastructures to reach urban ecological resilience to climate change (Case study: Yousef Abad neighborhood in Tehran). Journal of Environmental Studies, 45(3), 545-565. https://doi.org/10.22059/jes.2020.290829.1007933 [in Persian] Singh, P., Kikon, N., & Verma, P. (2017). Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustainable cities and society, 32, 100-114. https://doi.org/10.1016/j.scs.2017.02.018 Singh, R. B., & Grover, A. (2015). Spatial correlations of changing land use, surface temperature (UHI) and NDVI in Delhi using Landsat satellite images. Urban development challenges, risks and resilience in Asian mega cities, 83-97. http://doi.org/10.1007/978-4-431-55043-3_5 Stache, E. E., Schilperoort, B. B., Ottelé, M. M., & Jonkers, H. H. (2022). Comparative analysis in thermal behaviour of common urban building materials and vegetation and consequences for urban heat island effect. Building and Environment, 213, 108489. https://doi.org/10.1016/j.buildenv.2021.108489 Ullah, W., Ahmad, K., Ullah, S., Tahir, A. A., Javed, M. F., Nazir, A., ... & Mohamed, A. (2023). Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower Himalayan region. Heliyon, 9(2). http://doi.org/10.1016/j.heliyon.2023.e13322 Vaez Mousavi A., Mokhtarzadeh M. (2015). Estimation of land surface temperature using MODIS data. In: Gheragozlo A.: Geomatics 94 National Conference & Exhibition, Tehran, May 17, 2015: 1–9. https://www.sid.ir/paper/892070/fa [in Persian] Yadav, A., Kumar, R., & Swarup, S. (2023). Remote Sensing Image-Based Analysis of the Urban Heat Island Effect in Relation to the Normalized Difference Vegetation Index (NDVI): A Case Study of Patna Municipal Corporation. Int. J. Res. Appl. Sci. Eng. Technol.(IJRASET), 11(1), 1143-1155. https://doi.org/10.22214/ijraset.2023.48777 Yan, Z., Li, Z., Li, P., Zhao, C., Xu, Y., Cui, Z., & Sun, H. (2023). Spatial and temporal variation of NDVI and its driving factors based on geographical detector: a case study of Guanzhong plain urban agglomeration. Remote Sensing Applications: Society and Environment, 32, 101030. https://doi.org/10.1016/j.rsase.2023.101030 Yao, R., Wang, L., Gui, X., Zheng, Y., Zhang, H., & Huang, X. (2017). Urbanization effects on vegetation and surface urban heat islands in China’s Yangtze River Basin. Remote Sensing, 9(6), 540. https://doi.org/10.3390/rs9060540 Yao, R., Wang, L., Huang, X., Liu, Y., Niu, Z., Wang, S., & Wang, L. (2021). Long-term trends of surface and canopy layer urban heat island intensity in 272 cities in the mainland of China. Science of the Total Environment, 772, 145607. https://doi.org/10.1016/j.scitotenv.2021.145607 Yoo, S. (2018). Investigating important urban characteristics in the formation of urban heat islands: A machine learning approach. Journal of Big Data, 5(1), 2. https:// doi.org /10.1186/s40537-018-0113-z Zargari, M., Mofidi, A., Entezari, A., & Baaghideh, M. (2024). Climatic comparison of surface urban heat island using satellite remote sensing in Tehran and suburbs. Scientific Reports, 14(1), 643. https://doi.org/10.1038/s41598-023-50757-2 Zhou, B., Rybski, D., & Kropp, J. P. (2017). The role of city size and urban form in the surface urban heat island. Scientific reports, 7(1), 4791. https://doi.org/10.1038/s41598-017-04242-2 Zhou, D., Zhang, L., Li, D., Huang, D., & Zhu, C. (2016). Climate–vegetation control on the diurnal and seasonal variations of surface urban heat islands in China. Environmental Research Letters, 11(7), 074009. https://doi.org/10.1088/1748-9326/11/7/074009 Zhou, W., Qian, Y., Li, X., Li, W., & Han, L. (2014). Relationships between land cover and the surface urban heat island: seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landscape ecology, 29, 153-167. http://doi.org/10.1007/s10980-013-9950-5 | ||
آمار تعداد مشاهده مقاله: 520 تعداد دریافت فایل اصل مقاله: 214 |