- [1] Roohani N, Hurrell R, Kelishadi R, Schulin R. Zinc and its importance for human health: An integrative review. J Res Med Sci. 2013;18(2):144-157. doi: https://pubmed.ncbi.nlm.nih.gov/23914218/
- [2] Prasad AS. Zinc in human health: effect of zinc on immune cells. Mol Med. 2008;14(5-6):353-357. doi: https://doi.org/10.2119/2008-00033.Prasad
- [3] Hojyo S, Fukada T. Roles of zinc signaling in the immune system. J Immunol Res. 2016;2016:6762343. doi: https://doi.org/10.1155/2016/6762343
- [4] Skrovanek S, DiGuilio K, Bailey R, et al. Zinc and gastrointestinal disease. World J Gastrointest Pathophysiol. 2014;5(4):496-513. doi: http://dx.doi.org/10.4291/wjgp.v5.i4.496
- [5] Ohashi W, Hara T, Takagishi T, Hase K, Fukada T. Maintenance of intestinal epithelial homeostasis by zinc transporters. Dig Dis Sci. 2019;64(9):2404-2415. doi: https://doi.org/10.1007/s10620-019-05561-2
- [6] Kambe T, Tsuji T, Hashimoto A, Itsumura N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev. 2015;95(3):749-784. doi: https://doi.org/10.1152/physrev.00035.2014
- [7] Lichten LA, Cousins RJ. Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr. 2009;29:153-176. doi: https://doi.org/10.1146/annurev-nutr-033009-083312
- [8] Young JD, Yao SY, Baldwin JM, Cass CE, Baldwin SA. The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol Aspects Med. 2013;34(2-3):529-547. doi: https://doi.org/10.1016/j.mam.2012.05.007
- [9] Cragg RA, Christie GR, Phillips SR, et al. A novel zinc-regulated human zinc transporter, hZTL1, is localized to the enterocyte apical membrane. J Biol Chem. 2002;277(25):22789-22797. doi: https://doi.org/10.1074/jbc.M200577200
- [10] Colvin RA, Holmes WR, Fontaine CP, Maret W. Cytosolic zinc buffering and muffling: Their role in intracellular zinc homeostasis. Metallomics. 2010;2(5):306-317. doi: https://doi.org/10.1039/b926662c
- [11] Liuzzi JP, Aydemir F, Nam H, Knutson MD, Cousins RJ. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc Natl Acad Sci U S A. 2006;103(37):13612-13617. doi: https://doi.org/10.1073/pnas.0606424103
- [12] Aydemir TB, Thorn TL, Ruggiero CH, et al. Intestine-specific deletion of metal transporter Zip14 (Slc39a14) causes brain manganese overload and locomotor defects of manganism. Am J Physiol Gastrointest Liver Physiol. 2020;318(4):G673-G681. doi: https://doi.org/10.1152/ajpgi.00301.2019
- [13] Girijashanker K, He L, Soleimani M, et al. Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol. 2008;73(5):1413-1423. doi: https://doi.org/10.1124/mol.107.043588
- [14] Dufner-Beattie J, Wang F, Kuo YM, Gitschier J, Eide D, Andrews GK. The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. J Biol Chem. 2003;278(35):33474-33481. doi: https://doi.org/10.1074/jbc.M305000200
- [15] Liuzzi JP, Lichten LA, Rivera S, et al. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci U S A. 2005;102(19):6843-6848. doi: https://doi.org/10.1073/pnas.0502257102
- [16] Peake JM, Neubauer O, Walsh NP, Simpson RJ. Recovery of the immune system after exercise. J Appl Physiol. 2017;122(5):1077-1087. doi: https://doi.org/10.1152/japplphysiol.00622.2016
- [17] Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243-1276. doi: https://doi.org/10.1152/physrev.00031.2007
- [18] Van Wijck K, Lenaerts K, Van Loon LJ, Peters WH, Buurman WA, Dejong CH. Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS One. 2011;6(7):e22366. doi: https://doi.org/10.1371/journal.pone.0022366
- [19] Micheletti A, Rossi R, Rufini S. Zinc status in athletes: relation to diet and exercise. Sports Med. 2001;31(8):577-582. doi: https://doi.org/10.2165/00007256-200131080-00002
- [20] Bairwa R, Sodha R, Rajawat BS. Trachyspermum ammi. Pharmacogn Rev. 2012;6(11):56-60. doi:10.4103/0973-7847.95871
- [21] Boskabady MH, Alitaneh S, Alavinezhad A. Carum copticum L.: a herbal medicine with various pharmacological effects. Biomed Res Int. 2014;2014:569087. doi: https://doi.org/10.1155/2014/569087
- [22] Siddiquie F, Ahsan F, Mahmood T, Ahmad MA, Singh A, Bano S. Unlocking the food treasures: Trachyspermum ammi–A comprehensive exploration from field to pharmacology. Food Saf Health. 2024;2(3):322-343. doi: https://doi.org/10.1002/fsh3.12043
- [23] Ranjbaran A, Kavoosi G, Mojallal-Tabatabaei Z, Ardestani SK. The antioxidant activity of Trachyspermum ammi essential oil and thymol in murine macrophages. Biocatal Agric Biotechnol. 2019;20:101220. doi: https://doi.org/10.1016/j.bcab.2019.101220
- [24] Nazari A, Ghanbari-Niaki A, Nasiri K. The Selected Zinc Transporters (ZnT and ZIP) Gene Expression, Zinc, Iron and Glycogen Concentrations in Healthy Rat Testis: Effect of Aqueous Ajwain (Tracispermum ammi) Seeds Powder Extraction and High-intensity Treadmill Running. J Chem Health Risks. 2024;14(4):[In Press]. doi: https://doi.org/10.60829/jchr.2024.3121949
- [25] Niaki AG, Nazari A, Nasiri K. Intense Endurance Running Training and Supplementation with the Aqueous Extract of Ajwain Seed: Effect on the Levels of Zinc and Some zinc Transporters in the Liver Tissue of Male Wistar Rats. J Anim Biol. 2024;16(4):83-97. doi:10.61186/jab.16.4.83
- [26] Tinkov AA, Gatiatulina ER, Popova EV, et al. Early high-fat feeding induces alteration of trace element content in tissues of juvenile male Wistar rats. Biol Trace Elem Res. 2017;175(2):367-374. doi: https://doi.org/10.1007/s12011-016-0777-1
- [27] Handa SS, Khanuja SPS, Longo G, Rakesh DD, eds. Extraction Technologies for Medicinal and Aromatic Plants. ICS-UNIDO; 2008, https://www.unido.org/sites/default/files/2009-10/Extraction_technologies_for_medicinal_and_aromatic_plants_0.pdf
- [28] Javed I, Iqbal Z, Rahman ZU, Khan FH, Muhammad F, Aslam B, Ali L. Comparative antihyperlipidaemic efficacy of Trachyspermum ammi extracts in albino rabbits. Pak Vet J. 2006;26(1):23-29, Doi: https://doi.org/10.2754/avb200978020229
- [29] Ghanbari-Niaki A, Rahmati-Ahmadabad S. Effects of a fixed-intensity of endurance training and pistacia atlantica supplementation on ATP-binding cassette G4 expression. Chin Med. 2013;8:16. doi: https://doi.org/10.1186/1749-8546-8-23
- [30] Ghanbari-Niaki A, Ghanbari-Abarghooi S, Rahbarizadeh F, et al. Heart ABCA1 and PPAR-α genes expression responses in male rats: effects of high intensity treadmill running training and aqueous extraction of black crataegus-pentaegyna. Res Cardiovasc Med. 2013;2(4):153-159. doi: 10.5812/cardiovascmed.13892
- [31] Van Pelt LF. Ketamine and xylazine for surgical anesthesia in rats. J Am Vet Med Assoc. 1977;171(9):842-844, Doi: https://avmajournals.avma.org/view/journals/javma/171/9/javma.1977.171.09.842.xml
- [32] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402-408. doi: https://doi.org/10.1006/meth.2001.1262
- [33] Taylor KM, Morgan HE, Johnson A, Nicholson RI. Structure–function analysis of a novel member of the LIV-1 subfamily of zinc transporters, ZIP14. FEBS Lett. 2005;579(2):427-432. doi: https://doi.org/10.1016/j.febslet.2004.12.006
- [34] Costa RJS, Snipe RMJ, Kitic CM, Gibson PR. Systematic review: exercise‐induced gastrointestinal syndrome—implications for health and intestinal disease. Aliment Pharmacol Ther. 2017;46(3):246-265. doi: https://doi.org/10.1111/apt.14157
- [35] Aydemir TB, Cousins RJ. The multiple faces of the metal transporter ZIP14 (SLC39A14). J Nutr. 2018;148(2):174-184. doi: https://doi.org/10.1093/jn/nxx041
- [36] Aydemir TB, Kim MH, Kim J, et al. Metal transporter Zip14 (Slc39a14) deletion in mice increases manganese deposition and produces neurotoxic signatures and diminished motor activity. J Neurosci. 2017;37(25):5996-6006. doi: https://doi.org/10.1523/JNEUROSCI.0285-17.2017
- [37] Guthrie GJ, Aydemir TB, Troche C, Martin AB, Chang SM, Cousins RJ. Influence of ZIP14 (slc39A14) on intestinal zinc processing and barrier function. Am J Physiol Gastrointest Liver Physiol. 2015;308(3):G171-G178. doi: https://doi.org/10.1152/ajpgi.00021.2014
- [38] Khavidaki AD, Ghanbari-Niaki A, Nasiri K, Khavidaki MH. Zinc Transporters in the Livers of Healthy Male Wistar Rats: An Investigation of the Effects of Aerobic Exercise and Supplementation with Pumpkin Seed and White Pea. Zahedan J Res Med Sci. 2023;26(1):e136362. doi: https://doi.org/10.5812/zjrms-137982.
|