
تعداد نشریات | 31 |
تعداد شمارهها | 367 |
تعداد مقالات | 3,589 |
تعداد مشاهده مقاله | 4,596,402 |
تعداد دریافت فایل اصل مقاله | 5,162,513 |
اثر تمرین هوازی همراه با مکمل آرژنین بر احساس گرسنگی، بهره سیریِ وعده غذایی و بیان ژن miR-200a-3p و miR-103a-3p پلاسمایی در زنان چاق | ||
پژوهش در تغذیه ورزشی | ||
مقاله 3، دوره 3، شماره 4، دی 1403، صفحه 39-25 اصل مقاله (1.02 M) | ||
نوع مقاله: مقاله پژوهشی Released under (CC BY-NC 4.0) license I Open Access I | ||
شناسه دیجیتال (DOI): 10.22034/ren.2025.143698.1095 | ||
نویسندگان | ||
ندا ابراهیم پور؛ یوسف صابری؛ کریم آزالی علمداری* | ||
گروه علوم ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران. | ||
چکیده | ||
هدف بررسی اثرات هشت هفته تمرین هوازی با و بدون مکمل آرژنین بر احساس گرسنگی، بهره سیریِ وعده غذایی و بیان ژن miR-200a-3p و miR-103a-3p در پلاسمای زنان چاق بود. 48 زن غیرفعال داوطلب (سن 69/4± 41/57 سال و شاخص توده بدنی 09/1± 09/34 کیلوگرم بر مترمربع) به طور تصادفی به گروههای تمرین هوازی و دارونما، تمرین هوازی و مکمل آرژنین، مکمل آرژنین و دارونما تقسیم شدند. به مدت هشت هفته در برنامه هوازی دویدن بر روی تردمیل با آزمون GTX با 60 درصد از ضربان قلب واماندگی تا تکمیل 500 کالری (سه روز در هفته) شرکت کردند و روزانه با دوز 07/0 گرم به ازای هرکیلوگرم وزن بدن آرژنین مصرف کردند. از تحلیل واریانس تک راهه و آزمون تی همبسته برای تحلیل دادهها استفاده شد. یافته ها: بیان هردو ژن miR-200a-3p و miR-103a-3p در هر سه گروه بهطور معنیداری کاهش یافت (05/0>P). در گروه مکمل آرژنین دورکمر، وزن بدن و زمان رسیدن به واماندگی کاهش معنیداری مشاهده نشد (05/0<P). در گروه تمرین هوازی به همراه مکمل آرژنین همه شاخصها از جمله بیان ژنها، دورکمر، وزن بدن، احساس گرسنگی، بهره سیری بعد غذا و زمان رسیدن به واماندگی بهطور معنیداری بهبود یافت (05/0>P). همچنین در گروه تمرین هوازی در احساس گرسنگی و بهره سیری بعد از غذا کاهش معنیداری نداشت (05/0<P). نتیجه گیری: تمرین هوازی و مصرف مکمل آرژنین باعث کاهش بیان ژنهای miR-200a-3p،miR103a-3p و احساس گرسنگی میشود. همچنین سبب بهبود شاخصهای چاقی (دورکمر و وزن بدن)، بهره سیری فوری و زمان رسیدن به واماندگی میشود. | ||
کلیدواژهها | ||
تمرین هوازی؛ آرژنین؛ اشتها؛ میکروRNA؛ چاقی | ||
مراجع | ||
1. Khosroshahi MZ, Asbaghi O, Moradi S, Kaviani M, Mardani M, Jalili C. The effects of supplementation with L-arginine on anthropometric indices and body composition in overweight or obese subjects: A systematic review and meta-analysis. Journal of Functional Foods. 2020;71:104022, Doi: https://doi.org/10.1016/j.jff.2020.104022 . 2. Jobgen W, Meininger CJ, Jobgen SC, Li P, Lee M-J, Smith SB, et al. Dietary L-arginine supplementation reduces white fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. The Journal of nutrition. 2009;139(2):230-7, Doi: https://doi.org/10.3945/jn.108.096362 . 3. Shehzad A, Rabail R, Munir S, Jan H, Fernández-Lázaro D, Aadil RM. Impact of oats on appetite hormones and body weight management: a review. Current Nutrition Reports. 2023;12(1):66-8, Doi: https://doi.org/10.1007/s13668-023-00454-3. 4. Hazut N, Rapps K, Kristt DA, Susswein AJ, Weller A. Nitric oxide and l-arginine regulate feeding in satiated rats. Appetite. 2019;132:44-54, Doi: https://doi.org/10.1016/j.appet.2018.09.023 . 5. Tao H, Li L, He Y, Zhang X, Zhao Y, Wang Q, et al. Flavonoids in vegetables: Improvement of dietary flavonoids by metabolic engineering to promote health. Critical Reviews in Food Science and Nutrition. 2024;64(11):3220-34, Doi: https://doi.org/10.1080/10408398.2022.2131726 . 6. Cheng MH-Y, Bushnell D, Cannon DT, Kern M. Appetite regulation via exercise prior or subsequent to high-fat meal consumption. Appetite. 2009;52(1):193-8, Doi: https://doi.org/10.1016/j.appet.2008.09.015 . 7. Wee YS, Weis JJ, Gahring LC, Rogers SW, Weis JH. Age-related onset of obesity corresponds with metabolic dysregulation and altered microglia morphology in mice deficient for Ifitm proteins. PLoS One. 2015;10(4):e0123218, Doi: https://doi.org/10.1371/journal.pone.0123218 . 8. Kraemer R, Durand R, Hollander D, Tryniecki J, Hebert E, Castracane V. Ghrelin and other glucoregulatory hormone responses to eccentric and concentric muscle contractions. Endocrine. 2004;24:93-8, Doi: https://doi.org/10.1385/endo:24:1:093 . 9. EFTERNAVN F. Handbook of eating and drinking: Interdisciplinary perspectives. Springer; 2020. 10. Panda S, Maier G, Villareal DT. Targeting energy intake and circadian biology to engage mechanisms of aging in older adults with obesity: calorie restriction and time-restricted eating. The Journals of Gerontology: Series A. 2023 Jun 1;78(Supplement_1):79-85, Doi: https://doi.org/10.1093/gerona/glad069 . 11. Bany Bakar R, Reimann F, Gribble FM. The intestine as an endocrine organ and the role of gut hormones in metabolic regulation. Nature reviews Gastroenterology & hepatology. 2023;20(12):784-96, Doi: https://doi.org/10.1038/s41575-023-00830-y . 12. Westerterp-Plantenga M, Rolland V, Wilson S, Westerterp K. Satiety related to 24 h diet-induced thermogenesis during high protein/carbohydrate vs high fat diets measured in a respiration chamber. European journal of clinical nutrition. 1999;53(6):495-502, Doi: https://doi.org/10.1038/sj.ejcn.1600782 . 13. Halton TL, Hu FB. The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. Journal of the American college of nutrition. 2004;23(5):373-85, Doi: https://doi.org/10.1080/07315724.2004.10719381 . 14. Berthoud HR. Vagal and hormonal gut–brain communication: from satiation to satisfaction. Neurogastroenterology & 2008;20:64-72, Doi: https://doi.org/10.1111/j.1365-2982.2008.01104.x . 15. Hofer D, Asan E, Drenckhahn D. Chemosensory perception in the gut. Physiology. 1999;14(1):18-23, Doi: https://doi.org/10.1152/physiologyonline.1999.14.1.18. 16. Spreckley E, Murphy KG. The L-cell in nutritional sensing and the regulation of appetite. Frontiers in nutrition. 2015 Jul 20;2:23, Doi: https://doi.org/10.3389/fnut.2015.00023 . 17. McGavigan AK, O'Hara HC, Amin A, Kinsey-Jones J, Spreckley E, Alamshah A, et al. L-cysteine suppresses ghrelin and reduces appetite in rodents and humans. International journal of obesity. 2015;39(3):447-55, Doi: https://doi.org/10.1038/ijo.2014.172. 18. Meek CL, Reimann F, Park AJ, Gribble Can encapsulated glutamine increase GLP-1 secretion, improve glucose tolerance, and reduce meal size in healthy volunteers? A randomised, placebo-controlled, cross-over trial. The Lancet. 2015;385:S68, Doi: https://doi.org/10.1016/s0140-6736(15)60383-x . 19. Saxena S, Singh R, Dutta D, Gautam N, Setya S, Talegaonkar S. Nutraceuticals and their applications: recent trends and challenges. Anxiety, Gut Microbiome, and Nutraceuticals. 2023:1-32. 20. Alamshah A, McGavigan AK, Spreckley E, Kinsey‐Jones J, Amin A, Tough I, et al. L‐Arginine promotes gut hormone release and reduces food intake in rodents. Diabetes, Obesity and Metabolism. 2016;18(5):508-18, Doi: https://doi.org/10.1111/dom.12644 . 21. Holik A-K, Schweiger K, Stoeger V, Lieder B, Reiner A, Zopun M, et al. Gastric serotonin biosynthesis and its functional role in L-arginine-induced gastric proton secretion. International journal of molecular sciences. 2021;22(11):5881, Doi: https://doi.org/10.3390/ijms22115881. 22. Kim D, Martin S, Desai K. The effects of a comparatively higher dose of 1000 mg/kg/d of oral L-or D-arginine on the L-arginine metabolic pathways in male Sprague-Dawley rats. PLoS One. 2023;18(8):e0289476, Doi: https://doi.org/10.1371/journal.pone.0289476 . 23. Boon MR, Hanssen MJ, Brans B, Hülsman CJ, Hoeks J, Nahon KJ, et al. Effect of L-arginine on energy metabolism, skeletal muscle and brown adipose tissue in South Asian and Europid prediabetic men: a randomised double-blinded crossover study. Diabetologia. 2019;62:112-22, Doi: https://doi.org/10.1007/s00125-018-4752-6 . 24. Ma X, Han M, Li D, Hu S, Gilbreath KR, Bazer FW, Wu G. L-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway. Amino Acids. 2017 May;49(5):957-64, Doi: https://doi.org/10.1007/s00726-017-2399-0 . 25. Gambardella J, Fiordelisi A, Spigno L, Boldrini L, Lungonelli G, Di Vaia E, et al. Effects of Chronic Supplementation of L‐Arginine on Physical Fitness in Water Polo Players. Oxidative medicine and cellular longevity. 2021;2021(1):6684568, Doi: https://doi.org/10.1155/2021/6684568. 26. Karimi E, Hatami E, Ghavami A, Hadi A, Darand M, Askari G. Effects of L-arginine supplementation on biomarkers of glycemic control: a systematic review and meta‐analysis of randomised clinical trials. Archives of physiology and biochemistry. 2023 May 4;129(3):700-10, Doi: https://doi.org/10.1080/13813455.2020.1863991. 27. Wu G, Meininger CJ, McNeal CJ, Bazer FW, Rhoads JM. Role of L-arginine in nitric oxide synthesis and health in humans. Amino acids in nutrition and health: Springer; 2021. p. 167-87, Doi: https://doi.org/10.1007/978-3-030-74180-8_10. 28. Cruz MM, Simão JJ, Sá RDd, Farias TS, Silva VSd, Abdala F, et al. Palmitoleic acid decreases non-alcoholic hepatic steatosis and increases lipogenesis and fatty acid oxidation in adipose tissue from obese mice. Frontiers in endocrinology. 2020;11:537061, Doi: https://doi.org/10.3389/fendo.2020.537061 . 29. Castro F, Su S, Choi H, Koo E, Kim W. L-Arginine supplementation enhances growth performance, lean muscle, and bone density but not fat in broiler chickens. Poultry science. 2019;98(4):1716-22, Doi: https://doi.org/10.3382/ps/pey504. 30. Brugaletta G, Zampiga M, Laghi L, Indio V, Oliveri C, De Cesare A, et al. Feeding broiler chickens with arginine above recommended levels: effects on growth performance, metabolism, and intestinal microbiota. Journal of Animal Science and Biotechnology. 2023;14(1):33, Doi: https://doi.org/10.1186/s40104-023-00839-y. 31. Yao K, Yin Y-L, Chu W, Liu Z, Deng D, Li T, et al. Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. The Journal of nutrition. 2008;138(5):867-72, Doi: https://doi.org/10.1093/jn/138.5.867. 32. Vainshtein A, Sandri M. Signaling pathways that control muscle mass. International journal of molecular sciences. 2020;21(13):4759, Doi: https://doi.org/10.3390/ijms21134759. 33. Moghadam TM, Fathi M, Hosseini SRA, Ziaaldini MM, Rashidlamir A. Effect of Arginine Supplementation and High Intensity Training on Appetite Hormones and Body Composition of Obese Boys. Hormozgan Medical Journal. 2021;25(4):187-91, Doi: 10.34172/hmj.2021.26. 34. Azali Alamdari K, SatarZadeh R. Impact of Aerobic Training and Vitamin D Supplementation on Hunger Rate and Serum Ghrelin and Insulin in Middle Agead Females with Metablic Syndrome. Research in Exercise Nutrition. 2022;1(1):13-1, Doi: https://doi.org/10.34785/J019.2022.408. 35. King NA, Caudwell PP, Hopkins M, Stubbs JR, Naslund E, Blundell JE. Dual-process action of exercise on appetite control: increase in orexigenic drive but improvement in meal-induced satiety. The American journal of clinical nutrition. 2009;90(4):921-7, Doi: https://doi.org/10.3945/ajcn.2009.27706. 36. Förstemann K, Horwich MD, Wee L, Tomari Y, Zamore PD. Drosophila microRNAs are sorted into functionally distinct argonaute complexes after production by dicer-1. Cell. 2007;130(2):287-97, doi: https://doi.org/10.1016/j.cell.2007.05.056. 37. Grimson A, Farh KK-H, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Molecular cell. 2007;27(1):91-105, Doi: https://doi.org/10.1016/j.molcel.2007.06.017. 38. Schneeberger M, Gomez-Valadés AG, Ramirez S, Gomis R, Claret M. Hypothalamic miRNAs: emerging roles in energy balance control. Frontiers in neuroscience. 2015;9:41, Doi: https://doi.org/10.3389/fnins.2015.00041. 39. Crépin D, Benomar Y, Riffault L, Amine H, Gertler A, Taouis M. The over-expression of miR-200a in the hypothalamus of ob/ob mice is linked to leptin and insulin signaling impairment. Molecular and cellular endocrinology. 2014 Mar 25;384(1-2):1-1, Doi: https://doi.org/10.1016/j.mce.2013.12.016. 40. Vinnikov IA, Hajdukiewicz K, Reymann J, Beneke J, Czajkowski R, Roth LC, et al. Hypothalamic miR-103 protects from hyperphagic obesity in mice. Journal of Neuroscience. 2014;34(32):10659-74, Doi: https://doi.org/10.1523/jneurosci.4251-13.2014. 41. Benite-Ribeiro SA, Putt DA, Soares-Filho MC, Santos JM. The link between hypothalamic epigenetic modifications and long-term feeding control. Appetite. 2016;107:445-53, Doi: https://doi.org/10.1016/j.appet.2016.08.111. 42. Zhao Y, Zhang A, Wang Y, Hu S, Zhang R, Qian S. Genome-wide identification of brain miRNAs in response to high-intensity intermittent swimming training in Rattus norvegicus by deep sequencing. BMC Molecular Biology. 2019;20:1-15, Doi: https://doi.org/10.1186/s12867-019-0120-4. 43. Nielsen S, Åkerström T, Rinnov A, Yfanti C, Scheele C, Pedersen BK, et al. The miRNA plasma signature in response to acute aerobic exercise and endurance training. PloS one. 2014;9(2):e87308, Doi: https://doi.org/10.1371/journal.pone.0087308. 44. Vatandoost N, Amini M, Iraj B, Momenzadeh S, Salehi R. Dysregulated miR-103 and miR-143 expression in peripheral blood mononuclear cells from induced prediabetes and type 2 diabetes rats. Gene. 2015 Nov 1;572(1):95-100, Doi: https://doi.org/10.1016/j.gene.2015.07.015. 45. Hsieh C-H, Rau C-S, Wu S-C, Yang JC-S, Wu Y-C, Lu T-H, et al. Weight-reduction through a low-fat diet causes differential expression of circulating microRNAs in obese C57BL/6 mice. BMC genomics. 2015;16:1-11, Doi: https://doi.org/10.1186/s12864-015-1896-3. 46. Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 2011;474(7353):649-53, Doi: https://doi.org/10.1038/nature10112. 47. Benoit C, Ould-Hamouda H, Crepin D, Gertler A, Amar L, Taouis M. Early leptin blockade predisposes fat-fed rats to overweight and modifies hypothalamic microRNAs. J Endocrinol. 2013;218(1):35-47, Doi: https://doi.org/10.1530/joe-12-0561. 48. Quintanilha BJ, Ferreira LRP, Ferreira FM, Neto EC, Sampaio GR, Rogero MM. Circulating plasma microRNAs dysregulation and metabolic endotoxemia induced by a high-fat high-saturated diet. Clinical Nutrition. 2020;39(2):554-62, Doi: https://doi.org/10.1016/j.clnu.2019.02.042. 49. Hosseini-Esfahani F, Bahadoran Z, Moslehi N, Asghari G, Yuzbashian E, Hosseinpour-Niazi S, et al. Metabolic syndrome: findings from 20 years of the Tehran lipid and glucose study. International journal of endocrinology and metabolism. 2018;16(4 Suppl):e84771, Doi: https://doi.org/10.5812/ijem.84771. 50. Nikoo M, Ebrahimi M. Assessment of changes in energy intake and appetite in response to exercise during fasting and after breakfast in overweight women. Research in Exercise Nutrition. 2024;3(2):22-13, Doi: https://doi.org/10.22034/ren.2025.143059.1073. 51. Wu G, Bazer FW, Davis TA, Kim SW, Li P, Marc Rhoads J, et al. Arginine metabolism and nutrition in growth, health and disease. Amino acids. 2009;37:153-6, Doi: https://doi.org/10.1007/s00726-008-0210-y.. 52. Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Comprehensive physiology. 2011 Jan;2(2):1143-211, Doi: https://doi.org/10.1002/cphy.c110025. 53. McKnight JR, Satterfield MC, Jobgen WS, Smith SB, Spencer TE, Meininger CJ, et al. Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino acids. 2010;39:349-57, Doi: https://doi.org/10.1007/s00726-010-0598-z. 54. Hurt RT, Ebbert JO, Schroeder DR, Croghan IT, Bauer BA, McClave SA, et al. L-arginine for the treatment of centrally obese subjects: a pilot study. Journal of dietary supplements. 2014;11(1):40-5, Doi: https://doi.org/10.3109/19390211.2013.859216. 55. Martina V, Masha A, Gigliardi VR, Brocato L, Manzato E, Berchio A, et al. Long-term N-acetylcysteine and L-arginine administration reduces endothelial activation and systolic blood pressure in hypertensive patients with type 2 diabetes. Diabetes care. 2008;31(5):940-, Doi: https://doi.org/10.2337/dc07-2251. 56. Lucotti P, Monti L, Setola E, La Canna G, Castiglioni A, Rossodivita A, et al. Oral L-arginine supplementation improves endothelial function and ameliorates insulin sensitivity and inflammation in cardiopathic nondiabetic patients after an aortocoronary bypass. Metabolism. 2009;58(9):1270-6, Doi: https://doi.org/10.1016/j.metabol.2009.03.029. 57. Alizadeh M, Daneghian S, Ghaffari A, Ostadrahimi A, Safaeiyan A, Estakhri R, et al. The effect of hypocaloric diet enriched in legumes with or without L-arginine and selenium on anthropometric measures in central obese women. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences. 2010;15(6):331, Doi: https://pmc.ncbi.nlm.nih.gov/articles/PMC3082837/. 58 Apolzan JW, Stein JA, Rood JC, Beyl RA, Yang S, Greenway FL, et al. Effects of acute arginine supplementation on neuroendocrine, metabolic, cardiovascular, and mood outcomes in younger men: A double-blind, placebo-controlled trial. Nutrition. 2022;101:111658, Doi: https://doi.org/10.1016/j.nut.2022.111658. 59. Luiking YC, Engelen MP, Deutz NE. Regulation of nitric oxide production in health and disease. Current Opinion in Clinical Nutrition & Metabolic Care. 2010 Jan 1;13(1):97-104, Doi: https://doi.org/10.1097/mco.0b013e328332f99d. 60. Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G. Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. The Journal of nutritional biochemistry. 2006;17(9):571-88, Doi: https://doi.org/10.1016/j.jnutbio.2005.12.001. 61. Amin A, Neophytou C, Thein S, Martin NM, Alamshah A, Spreckley E, et al. L‐Arginine increases postprandial circulating GLP‐1 and PYY levels in humans. Obesity. 2018;26(11):1721-6, Doi: https://doi.org/10.1002/oby.22323. 62. Koshki MH, Mollanovruzi A, Lamir AR. Effect of chronic high-intensity exercise on hunger and satiation and levels of acylated ghrelin and leptin in women. Biomedical Human Kinetics. 2018;10(1):67-75, Doi: 10.1515/bhk-2018-0011. 63. Maraki M, Tsofliou F, Pitsiladis Y, Malkova D, Mutrie N, Higgins S. Acute effects of a single exercise class on appetite, energy intake and mood. Is there a time of day effect? Appetite. 2005;45(3):272-8, Doi: https://doi.org/10.1016/j.appet.2005.07.005. 64. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Medicine and science in sports and exercise. 2008;40(1):181, Doi: https://doi.org/10.1249/mss.0b013e31815a51b3. 65. Hagobian TA, Yamashiro M, Hinkel-Lipsker J, Streder K, Evero N, Hackney T. Effects of acute exercise on appetite hormones and ad libitum energy intake in men and women. Applied Physiology, Nutrition, and Metabolism. 2013;38(999):66-72, Doi: https://doi.org/10.1139/apnm-2012-0104. 66. Bowen P, Neil L, Norton A, Padgett K. Effects of high intensity interval training vs. high volume training on VO2max, power, and body composition of college-age students. 2012, https://digitalcommons.hope.edu/curcp_11/28/. 67. Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, DiMenna FJ, Wilkerson DP, et al. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. Journal of applied physiology. 2009, Doi: https://doi.org/10.1152/japplphysiol.00722.2009. 68. Hosseini A, Valipour Dehnou V, Azizi M, Khanjari Alam M. Effect of high‐intensity interval training (HIT) for 4 weeks with and without L‐arginine supplementation on the performance of women's futsal players. Quarterly of Horizon of Medical Sciences. 2015;21(2):113-9. 69. Koppo K, Taes YE, Pottier A, Boone J, Bouckaert J, Derave W. Dietary arginine supplementation speeds pulmonary VO2 kinetics during cycle exercise. Medicine and science in sports and exercise. 2009;41(8):1626-32, Doi: https://doi.org/10.1249/mss.0b013e31819d81b6. 70. Radom‐Aizik S, Zaldivar Jr F, Leu SY, Adams GR, Oliver S, Cooper DM. Effects of exercise on microRNA expression in young males peripheral blood mononuclear cells. Clinical and translational science. 2012;5(1):32-8, Doi: https://doi.org/10.1111/j.1752-8062.2011.00384.x.
| ||
آمار تعداد مشاهده مقاله: 211 تعداد دریافت فایل اصل مقاله: 24 |