
تعداد نشریات | 31 |
تعداد شمارهها | 334 |
تعداد مقالات | 3,274 |
تعداد مشاهده مقاله | 4,073,542 |
تعداد دریافت فایل اصل مقاله | 4,879,362 |
پیشبینی ماندگاری مشتریان باشگاههای ورزشی با استفاده از الگوریتم نزدیکترین همسایه | ||
مطالعات بازاریابی ورزشی | ||
مقاله 6، دوره 5، شماره 1، اردیبهشت 1403، صفحه 69-86 اصل مقاله (1.03 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/sms.2024.140657.1302 | ||
نویسنده | ||
جواد شهلایی باقری* | ||
دانشیار گروه مدیریت ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه علامه طباطبائی، تهران، ایران | ||
چکیده | ||
تکنیک داده کاوی با افزایش دادههای جامع که با موفقیت در مناطق مختلف مورد استفاده قرار میگیرد، ما را قادر میسازد تا دانش پنهان را برای تأثیرگذاری بر خدمات ورزشی پیدا کنیم. تمرکز پژوهش حاضر با استفاده از الگوریتم نزدیکترین همسایه (KNN)، بر پیشبینی ماندگاری مشتریان باشگاههای است. جامعه آماری این مطالعه توسعهای-کاربردی مربوط به 724 ورزشکار بود که در فراخوان اینترنتی (واتس آپ، اینستاگرام، تلگرام و ...) با تکمیل پرسشنامه در پژوهش حاضر شرکت نمودند. بعد از حذف پرسشنامههای فاقد شرایط نهایتاً تعداد 537 ورزشکار در رده سنی 20 تا 60 سال در پژوهش حاضر شرکت نمودند. پرسشنامه الکترونیکی، ناشناس و محقق ساخته دارای 75 عامل مربوط به رضایتمندی مشتریان بود، که بر اساس بازخورد دریافتی، تغییرات متعددی در پرسشنامه ایجاد گردید و نهایتا 18 عامل بهعنوان عوامل اصلی ریزش یا ماندگاری مرتبط با امکانات و شرایط سالنهای ورزشی انتخاب شدند. روایی صوری پرسشنامه توسط 5 نفر از اساتید دانشگاه و متخصص در حوزه مرتبط بررسی شد. نتایج نشان داد الگوریتم KNN میتواند با دقت 4/73 % درصد و صحت 6/71 % درصد ماندگاری مشتریان سالن ورزشی خصوصی که تکرار خرید دارند را پیشبینی کند. این مطالعه نشان داد با کشف الگوها و روابط پنهان در دادهها، احتمالا بهدرستی میتوان از این الگوریتم برای بهبود کیفیت مدیریت اماکن ورزشی جهت جلوگیری از ریزش و ماندگاری بیشتر استفاده کرد. | ||
کلیدواژهها | ||
باشگاه های ورزشی؛ پیش بینی؛ الگوریتم KNN؛ ماندگاری | ||
مراجع | ||
Abbas, K., Sayed Mohsen, S. A. & Babak, S. (2022) Analysis of customer orientation, investigation of the situation of one of Iran's mobile phone operators with the help of data mining methods. Industrial Management Journal 12(4):672-696. https://doi.org/10.1145/3644523.3644526 [Persian] Ahmadi, A.-A., Sirayi, A. B. & Moghadasan, M. H. (2014). Information technology; a facilitator for improving dynamic capabilities through knowledge management utilization. Journal of Management and Accounting Studies 2(2):38-51. https://doi.org/10.24200/jmas.vol2iss02pp38-51 [Persian] Aldosary, M. & Alrashdan, A. (2021). Churn prediction for gym members using artificial neural networks assisted with the psychological concept of habit formation in the fitness industry. Oliveira 18(2)3996-4005. https://doi.org/10.740/J021.2021.872 Behnam, M., et al. (2021). "The impact of consumer knowledge on profitable consumer retention through perceived service quality and psychological involvement in non-profit sport clubs." International Journal of Sports Marketing and Sponsorship 22(2):407-427. https://doi.org/10.1108/IJSMS-03-2020-0039 Naghizadeh-Baghi, A., et al. (2024). The Effect of Customer Satisfaction on E-Purchase Intention with Emphasis on the Mediating Role of Customer Loyalty (Case Study: Online Sports Stores). Journal of Sport Marketing Studies 4(4):19-38 https://doi.org/10.22034/SMS.2024.140421.1282 [Persian] Shahvali Kohshouri, J., et al. (2022). Examining the Environmental Behaviors of Sports Consumers: The Effect of Green Marketing Tools." Sports Marketing Studies 3(4): 117-196. https://doi.org/10.22034/SMS.2022.62546 [Persian] Bai, Nasser, Nezri, Esfahaninia, Akram, Anzahai, H., & Nasrati, Q. (2019). Studying the effect of social responsibility on customer loyalty of fitness clubs with the mediating role of club reputation. Contemporary research in sports management 9(17):81-93. https://doi.org/10.2212/CSM14.2019.763 Behnam, M., Pyun, D. Y., Doyle, J. P. & Delshab, V. (2021). The impact of consumer knowledge on profitable consumer loyalty through perceived service quality and psychological involvement in non-profit sport clubs. International Journal of Sports Marketing and Sponsorship 2(2):407-427. https://doi.org/10.1108/IJSMS-03-2020-0039 Cao, C. (2012). Sports data mining technology used in basketball outcome prediction. Technological University Dublin 8(1):31-46. https://doi.org/10.1504/IJDS.2022.10049198 Chelladurai, P. (2014). Managing organizations for sport and physical activity: A systems perspective: Taylor & Francis 5(6):78-92. https://doi.org/10.4324/9781315213286 Chelladurai, P., & Kim, A. C. H. (2022). Human resource management in sport and recreation: Human kinetics 3(7):408-423. https://doi.org/10.89/9781718210028 Clemente, M., Giner-Bosch, V., & San Matías, S. (2010). Assessing classification methods for churn prediction by composite indicators. Technical Report 4(6):22-37. https://doi.org/10.11/ DEIOAC201202 Davoodi, E., & Khanteymoori, A. R. (2010). Horse racing prediction using artificial neural networks. Recent Advances in Neural Networks, Fuzzy Systems & Evolutionary Computing 2(1):155-160. https://doi.org/10.54/EC.765375 Ghobadi Yeganeh, A., & Zardoshtian, S. (2018). The Effect of Quotient Reputation with Customers' Expectations Sport Clubs. Sport Management Studies 10(47):167-184. https:// doi.org/10.22089/smrj.2017.1070 [Persian] Goharrostami, H. R., Pouryousefi, K., Benar, N., & Nazari, S. (2022). Investigating the effect of social responsibility on Customers loyalty of fitness clubs with role moderating of image and reputation. Journal of Sport Marketing Studies 2(3):30-60. https://doi.org/10.34785/J021.2022.009 [Persian] Haoxiang, W., & Smys, S. (2021). Big data analysis and perturbation using data mining algorithm. Journal of Soft Computing Paradigm (JSCP) 3(1):19-28. https://doi.org/10.36548/jscp.2021.1.003 He, B., Shi, Y., Wan, Q., & Zhao, X. (2014). Prediction of customer attrition of commercial banks based on SVM model. Procedia computer science 31(7):423-430. https://doi.org/10.1016/j.procs.2014.05.286 Hu, H.-H., Kandampully, J., & Juwaheer, T. D. (2009). Relationships and impacts of service quality, perceived value, customer satisfaction, and image: an empirical study. The service industries journal 29(2):111-125. https://doi.org/10.1080/02642060802292932 Jadhav, R. J., & Pawar, U. T. (2011). Churn prediction in telecommunication using data mining technology. International Journal of Advanced Computer Science and Applications 2(2)67-82. https://doi.org/10.14569/IJACSA.2011.020204 Javadein, S. R. S., Khanlari, A., & Estiri, M. (2008). Customer loyalty in the sport services industry: the role of service quality, customer satisfaction, commitment and trust. Journal of Human Sciences 5(2)41-58. https://doi.org/10.351/HS44.27652.322 Kantardzic, M. (2011). Data mining: concepts, models, methods, and algorithms: John Wiley & Sons 11(5):659-672. https://doi.org/10.42/WS978-1119516040 Keimasi, M., Esfidani, M., & Esmailiyan, A. (2016). Clustering Customers Loyalty in the Mellat Bank Customers' Club, Based on Demographic Information Using Data Mining Method. New Marketing Research Journal 6(1):39-58. https://doi.org/10.3233/IDT-180335 [Persian] Ko, L.-M. (2009). A systematic review of the literature on management competencies in the sports industries. Paper presented at the 2009 International Conference on Knowledge-Based Economy & Global Management, Tainan 15(1):389-399 https://doi.org/10.3390/su15010389 Le Conté, J. (2014). Measuring and managing customer loyalty in Physical activity and Sports Centres (PSCs). 2nd International Symposium on Partial Least Squares Path Modeling Seville 7(2)38-49 https://doi.org/10.66/psc11.7554543 Loranca-Valle, C., Cuesta-Valiño, P., Núnez-Barriopedro, E., & Gutiérrez-Rodríguez, P. (2021). Management of loyalty and its main antecedents in sport organizations: a systematic analysis review. Frontiers in psychology 12(4)783-796. https://doi.org/10.3389/fpsyg.2021.783781 Mach-Król, M., & Hadasik, B. (2021). On a certain research gap in big data mining for customer insights. Applied Sciences 11(5):6993-6712. https://doi.org/10.3390/app11156993 Maroufkhani, P., Tseng, M.-L., Iranmanesh, M., Ismail, W. K. W., & Khalid, H. (2020). Big data analytics adoption: Determinants and performances among small to medium-sized enterprises. International journal of information management 1(5):54-71. https://doi.org/10.1016/j.ijinfomgt.2020.102190 McCabe, A., & Trevathan, J. (2008). Artificial intelligence in sports prediction. Paper presented at the Fifth International Conference on Information Technology: New Generations (pp. 1194-1197). IEEE. https://doi.org/10.1109/ITNG.2008.203 Plotnikova, V., Dumas, M., & Milani, F. (2020). Adaptations of data mining methodologies: A systematic literature review. PeerJ Computer Science 6(1):267-275. https://doi.org/ 10.7717/peerj-cs.267 Rowe, K., Shilbury, D., Ferkins, L., & Hinckson, E. (2013). Sport development and physical activity promotion: An integrated model to enhance collaboration and understanding. Sport Management Review 16(3):364-377. https://doi.org/10.1016/j.smr.2012.12.003 Sabbeh, S. F. (2018). Machine-learning techniques for customer retention: A comparative study. International Journal of Advanced Computer Science and Applications 9(2):721-739. https://doi.org/10.14569/IJACSA.2018.090238 Semrl, J., & Matei, A. (2017). Churn prediction model for effective gym customer retention. Paper presented at the 2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC) (pp. 1-3). https://doi.org/10.1109/BESC.2017.8256379 Sharma, D., Jalil, N. A., Regin, R., Rajest, S. S., Tummala, R. K., & Thangadurai, N. (2021). Predicting Network Congestion with Machine Learning. Paper presented at the 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC) 3(6):151-167. https://doi.org/10.1109/ICOSEC51865.2021.9591897 Sukow, A. E., & Grant, R. (2013). Forecasting and the role of churn in software-as-a-service business models. Scientific research 5(1):49-57 https://doi.org/10.4236/ib.2013.51A006 Tomasevic, N., Gvozdenovic, N., & Vranes, S. (2020). An overview and comparison of supervised data mining techniques for student exam performance prediction. Computers & education 143, p.103676. https://doi.org/10.1016/j.compedu.2019.103676 Wu, W.-T., Li, Y.-J., Feng, A.-Z., Li, L., Huang, T., Xu, A.-D., & Lyu, J. (2021). Data mining in clinical big data: the frequently used databases, steps, and methodological models. Military Medical Research 2(8):1-12. https://doi.org/10.1186/s40779-021-00338-z Zdravevski, E., & Kulakov, A. (2009). System for Prediction of the Winner in a Sports Game. Paper presented at the International conference on ICT innovations (pp.55-63). https://doi.org/10.1007/978-3-642-10781-8_7 Zarandi, H. P. (2021). "Meta-analysis of the relationship between service quality and customer satisfaction in sports organizations." Journal of Sport Marketing Studies 3(4):40-54. https://doi.org/10.52547/JABM.3.2.2541 [Persian] | ||
آمار تعداد مشاهده مقاله: 382 تعداد دریافت فایل اصل مقاله: 309 |