- [1] Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P. Alpha-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells. Int J Biochem Cell Biol. 2009 Oct;41(10):2015-24. doi: 10.1016/j.biocel.2009.05.008.
- [2] Váradi C. Clinical Features of Parkinson's Disease: The Evolution of Critical Symptoms. Biology (Basel). 2020 May 19;9(5):103. doi: 10.3390/biology9050103.
- [3] Regoni M, Valtorta F, Sassone J. Dopaminergic neuronal death via necroptosis in Parkinson's disease: A review of the literature. The European journal of neuroscience. 2024;59(6):1079-98, Doi: https://doi.org/10.1111/ejn.16136
- [4] Petrie EJ, Czabotar PE, Murphy JM. The Structural Basis of Necroptotic Cell Death Signaling. Trends Biochem Sci. 2019 Jan;44(1):53-63. doi: 10.1016/j.tibs.2018.11.002.
- [5] Zheng T, Zhang Z. Activated microglia facilitate the transmission of α-synuclein in Parkinson's disease. Neurochem Int. 2021 Sep;148:105094. doi: 10.1016/j.neuint.2021.105094.
- [6] Zheng C, Zhou X-W, Wang J-Z. The dual roles of cytokines in Alzheimer’s disease: update on interleukins, TNF-α, TGF-β and IFN-γ. Translational neurodegeneration. 2016;5(1):1-15.
- [7] Caccamo A, Branca C, Piras IS, Ferreira E, Huentelman MJ, Liang WS, Readhead B, Dudley JT, Spangenberg EE, Green KN, Belfiore R, Winslow W, Oddo S. Necroptosis activation in Alzheimer's disease. Nat Neurosci. 2017 Sep;20(9):1236-1246. doi: 10.1038/nn.4608.
- [8] Lashuel HA, Overk CR, Oueslati A, Masliah E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci. 2013 Jan;14(1):38-48. doi: 10.1038/nrn3406.
- [9] Henrichsmann M, Hempel G. Impact of medication therapy management in patients with Parkinson's disease. Int J Clin Pharm. 2016 Feb;38(1):54-60. doi: 10.1007/s11096-015-0206-0.
- [10] Goodwin VA, Richards SH, Taylor RS, Taylor AH, Campbell JL. The effectiveness of exercise interventions for people with Parkinson's disease: a systematic review and meta-analysis. Movement disorders : official journal of the Movement Disorder Society. 2008;23(5):631-40, Doi: https://doi.org/10.1002/mds.21922
- [11] Schootemeijer S, van der Kolk NM, Bloem BR, de Vries NM. Current Perspectives on Aerobic Exercise in People with Parkinson's Disease. Neurotherapeutics. 2020;17(4):1418-33, Doi: https://doi.org/10.1007/s13311-020-00904-8
- [12] Zhen K, Zhang S, Tao X, Li G, Lv Y, Yu L. A systematic review and meta-analysis on effects of aerobic exercise in people with Parkinson's disease. NPJ Parkinsons Dis. 2022 Oct 31;8(1):146. doi: 10.1038/s41531-022-00418-4.
- [13] Zhou X, Zhao P, Guo X, Wang J, Wang R. Effectiveness of aerobic and resistance training on the motor symptoms in Parkinson's disease: Systematic review and network meta-analysis. Frontiers in aging neuroscience. 2022;14:935176, Doi: https://doi.org/10.3389/fnagi.2022.935176
- [14] Soke F, Kocer B, Fidan I, Keskinoglu P, Guclu-Gunduz A. Effects of task-oriented training combined with aerobic training on serum BDNF, GDNF, IGF-1, VEGF, TNF-α, and IL-1β levels in people with Parkinson's disease: A randomized controlled study. Experimental gerontology. 2021;150:111384, Doi: https://doi.org/10.1016/j.exger.2021.111384
- [15] Wu SY, Wang TF, Yu L, Jen CJ, Chuang JI, Wu FS, Wu CW, Kuo YM. Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav Immun. 2011 Jan;25(1):135-46. doi: 10.1016/j.bbi.2010.09.006.
- [16] Hu Y, Zhang K, Zhang T, Wang J, Chen F, Qin W, Tong W, Guan Q, He Y, Gu C, Chen X, Kang UJ, Sun YE, Li S, Jin L. Exercise Reverses Dysregulation of T-Cell-Related Function in Blood Leukocytes of Patients With Parkinson's Disease. Front Neurol. 2020 Jan 28;10:1389. doi: 10.3389/fneur.2019.01389.
- [17] 17 Li JA, Loevaas MB, Guan C, Goh L, Allen NE, Mak MKY, Lv J, Paul SS. Does Exercise Attenuate Disease Progression in People With Parkinson's Disease? A Systematic Review With Meta-Analyses. Neurorehabil Neural Repair. 2023 May;37(5):328-352. doi: 10.1177/15459683231172752.
- [18] Nhu NT, Cheng YJ, Lee SD. Effects of Treadmill Exercise on Neural Mitochondrial Functions in Parkinson's Disease: A Systematic Review of Animal Studies. Biomedicines. 2021 Aug 13;9(8):1011. doi: 10.3390/biomedicines9081011.
- [19] Al-Jarrah M, Obaidat H, Bataineh Z, Walton L, Al-Khateeb A. Endurance exercise training protects against the upregulation of nitric oxide in the striatum of MPTP/probenecid mouse model of Parkinson's disease. NeuroRehabilitation. 2013;32(1):141-7. doi: 10.3233/NRE-130831.
- [20] Oñate M, Catenaccio A, Salvadores N, Saquel C, Martinez A, Moreno-Gonzalez I, et al. The necroptosis machinery mediates axonal degeneration in a model of Parkinson disease. Cell death and differentiation. 2020;27(4):1169-85, Doi: https://doi.org/10.1038/s41418-019-0408-4
- [21] Mitroshina EV, Saviuk M, Vedunova MV. Necroptosis in CNS diseases: Focus on astrocytes. Front Aging Neurosci. 2023 Jan 27;14:1016053. doi: 10.3389/fnagi.2022.1016053.
- [22] Dexter DT, Sian J, Rose S, Hindmarsh JG, Mann VM, Cooper JM, Wells FR, Daniel SE, Lees AJ, Schapira AH, et al. Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Ann Neurol. 1994 Jan;35(1):38-44. doi: 10.1002/ana.410350107.
- [23] Bagheri S, Haddadi R, Saki S, Kourosh-Arami M, Rashno M, Mojaver A, Komaki A. Neuroprotective effects of coenzyme Q10 on neurological diseases: a review article. Front Neurosci. 2023 Jun 23;17:1188839. doi: 10.3389/fnins.2023.1188839.
- [24] Tianle Chen "Coenzyme Q10: Does it benefit neurological diseases?", Proc. SPIE 12924, Third International Conference on Biological Engineering and Medical Science (ICBioMed2023), 129242O (8 January 2024); https://doi.org/10.1117/12.3012862
- [25] Tripathi S, Mishra R, Singh G. Chapter 22 - Neuroprotective potential of coenzyme Q10. In: Oliveira MRd, editor. Natural Molecules in Neuroprotection and Neurotoxicity: Academic Press; 2024. p. 493-508.
- [26] Muthukumaran K, Smith J, Jasra H, Sikorska M, Sandhu JK, Cohen J, Lopatin D, Pandey S. Genetic susceptibility model of Parkinson's disease resulting from exposure of DJ-1 deficient mice to MPTP: evaluation of neuroprotection by Ubisol-Q10. J Parkinsons Dis. 2014;4(3):523-530. doi: 10.3233/JPD-140368.
- [27] Matthews RT, Yang L, Browne S, Baik M, Beal MF. Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8892-7. doi: 10.1073/pnas.95.15.8892.
- [28]Błaszczyk JW. Energy Metabolism Decline in the Aging Brain-Pathogenesis of Neurodegenerative Disorders. Metabolites. 2020 Nov 7;10(11):450. doi: 10.3390/metabo10110450.
- [29] Villavicencio Tejo F, Quintanilla RA. Contribution of the Nrf2 Pathway on Oxidative Damage and Mitochondrial Failure in Parkinson and Alzheimer's Disease. Antioxidants (Basel). 2021 Jul 2;10(7):1069. doi: 10.3390/antiox10071069.
- [30] Anandhan A, Jacome MS, Lei S, Hernandez-Franco P, Pappa A, Panayiotidis MI, et al. Metabolic Dysfunction in Parkinson’s Disease: Bioenergetics, Redox Homeostasis and Central Carbon Metabolism. Brain Research Bulletin. 2017;133:12-30, Doi: https://doi.org/10.1016/j.brainresbull.2017.03.009
- [31] Gupta BK, Kumar S, Kaur H, Ali J, Baboota S. Attenuation of Oxidative Damage by Coenzyme Q(10) Loaded Nanoemulsion Through Oral Route for the Management of Parkinson's Disease. Rejuvenation research. 2018;21(3):232-48, Doi: https://doi.org/10.1089/rej.2017.1959
- [32] Safarinejad MR, Safarinejad S, Shafiei N, Safarinejad S. Effects of the reduced form of coenzyme Q10 (ubiquinol) on semen parameters in men with idiopathic infertility: a double-blind, placebo controlled, randomized study. J Urol. 2012 Aug;188(2):526-31. doi: 10.1016/j.juro.2012.03.131.
- [33] Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, Juncos JL, Nutt J, Shoulson I, Carter J, Kompoliti K, Perlmutter JS, Reich S, Stern M, Watts RL, Kurlan R, Molho E, Harrison M, Lew M; Parkinson Study Group. Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol. 2002 Oct;59(10):1541-50. doi: 10.1001/archneur.59.10.1541.
- [34] Park HW, Park CG, Park M, Lee SH, Park HR, Lim J, Paek SH, Choy YB. Intrastriatal administration of coenzyme Q10 enhances neuroprotection in a Parkinson's disease rat model. Sci Rep. 2020 Jun 12;10(1):9572. doi: 10.1038/s41598-020-66493-w.
- [35] Onaolapo OJ, Odeniyi AO, Jonathan SO, Samuel MO, Amadiegwu D, Olawale A, Tiamiyu AO, Ojo FO, Yahaya HA, Ayeni OJ, Onaolapo AY. An Investigation of the Anti-Parkinsonism Potential of Co-enzyme Q10and Co-enzyme Q10 /Levodopa-carbidopa Combination in Mice. Curr Aging Sci. 2021;14(1):62-75. doi: 10.2174/1874609812666191023153724.
- [36] Prajapati SK, Garabadu D, Krishnamurthy S. Coenzyme Q10 Prevents Mitochondrial Dysfunction and Facilitates Pharmacological Activity of Atorvastatin in 6-OHDA Induced Dopaminergic Toxicity in Rats. Neurotox Res. 2017 May;31(4):478-492. doi: 10.1007/s12640-016-9693-6.
- [37] Takahashi M, Takahashi K. Water-soluble CoQ10 as A Promising Anti-aging Agent for Neurological Dysfunction in Brain Mitochondria. Antioxidants (Basel). 2019 Mar 11;8(3):61. doi: 10.3390/antiox8030061.
- [38] Somayajulu-Niţu M, Sandhu JK, Cohen J, Sikorska M, Sridhar TS, Matei A, Borowy-Borowski H, Pandey S. Paraquat induces oxidative stress, neuronal loss in substantia nigra region and parkinsonism in adult rats: neuroprotection and amelioration of symptoms by water-soluble formulation of coenzyme Q10. BMC Neurosci. 2009 Jul 27; 10:88. doi: 10.1186/1471-2202-10-88.
- [39] Jiang YJ, Jin J, Nan QY, Ding J, Cui S, Xuan MY, et al. Coenzyme Q10 attenuates renal fibrosis by inhibiting RIP1-RIP3-MLKL-mediated necroinflammation via Wnt3α/β-catenin/GSK-3β signaling in unilateral ureteral obstruction. International Immunopharmacology. 2022;108: 108868, Doi: https://doi.org/10.1016/j.intimp.2022.108868
- [40] Robinson N, Ganesan R, Hegedűs C, Kovács K, Kufer TA, Virág L. Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos. Redox biology. 2019; 26:101239, Doi: https://doi.org/10.1016/j.redox.2019.101239
- [41] Asemi-Rad A, Moafi M, Aliaghaei A, Abbaszadeh H-A, Abdollahifar M-A, Ebrahimi M-J, et al. The effect of dopaminergic neuron transplantation and melatonin co-administration on oxidative stress-induced cell death in Parkinson’s disease. Metabolic Brain Disease. 2022;37(8):2677-85, Doi: https://doi.org/10.1007/s11011-022-01021-5
- [42] Landers MR, Kinney JW, van Breukelen F. Forced exercise before or after induction of 6-OHDA-mediated nigrostriatal insult does not mitigate behavioral asymmetry in a hemiparkinsonian rat model. Brain Res. 2014 Jan 16;1543:263-70. doi: 10.1016/j.brainres.2013.10.054.
- [43] Hashemvarzi, S. A., Samadi, B., khazaeli, N. Preconditioning Effect of Aerobic Exercise with Vitamin D3 Intake on VEGF Levels in 6-OHDA-Lesioned Rat Model of Parkinson's Disease. Journal of Basic and Clinical Pathophysiology, 2017; 5(2): 1-8. doi: 10.22070/jbcp.2017.2494.1077
- [44] Houshmand GH, Nikbakht J, Mahmoudi M, Assadpour S, Arab Firozjae A, Arimi AA, et al. Evaluation of Gallic Acid Effect on Perphenazine Induced Catatonia in Rats Evaluating the Effect of Gallic Acid on. Armaghan-e-Danesh. 2021;26(5):744-56, Doi: http://armaghanj.yums.ac.ir/article-1-3066-en.html
- [45] Sikorska M, Lanthier P, Miller H, Beyers M, Sodja C, Zurakowski B, et al. Nanomicellar formulation of coenzyme Q10 (Ubisol-Q10) effectively blocks ongoing neurodegeneration in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model: potential use as an adjuvant treatment in Parkinson's disease. Neurobiol Aging. 2014;35(10):2329-46, Doi: https://doi.org/10.1016/j.neurobiolaging.2014.03.032
- [46] Kaagman DGM, van Wegen EEH, Cignetti N, Rothermel E, Vanbellingen T, Hirsch MA. Effects and Mechanisms of Exercise on Brain-Derived Neurotrophic Factor (BDNF) Levels and Clinical Outcomes in People with Parkinson's Disease: A Systematic Review and Meta-Analysis. Brain Sci. 2024 Feb 21;14(3):194. doi: 10.3390/brainsci14030194.
- [47] Rauchová H. Coenzyme Q10 effects in neurological diseases. Physiol Res. 2021 Dec 30;70(Suppl4): S683-S714. doi: 10.33549/ physiolres.934712, Doi: https://doi.org/10.33549/physiolres.934712
- [48] Shukla S, Dubey KK. CoQ10 a super-vitamin: review on application and biosynthesis. 3 Biotech. 2018 May;8(5):249. doi: 10.1007/ s13205-018-1271-6.
- [49] Langeskov-Christensen M, Franzén E, Grøndahl Hvid L, Dalgas U. Exercise as medicine in Parkinson's disease. J Neurol Neurosurg Psychiatry. 2024 Oct 16;95(11):1077-1088. doi: 10.1136/jnnp-2023-332974.
- [50] Bhagavan HN, Chopra RK. Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations. Mitochondrion. 2007;7:S78-S88, Doi: https://doi.org/10.1016/j.mito.2007.03.003
- [51] Xu J, Jin X, Ye Z, Wang D, Zhao H, Tong Z. Opposite Roles of Co-enzyme Q10 and Formaldehyde in Neurodegenerative Diseases. American Journal of Alzheimer's Disease & Other Dementias. 2022;37:15333175221143274, Doi: https://doi.org/10.1177/15333175221143274
- [52] Jing L, He MT, Chang Y, Mehta SL, He QP, Zhang JZ, Li PA. Coenzyme Q10 protects astrocytes from ROS-induced damage through inhibition of mitochondria-mediated cell death pathway. Int J Biol Sci. 2015 Jan 1;11(1):59-66. doi: 10.7150/ijbs.10174.
- [53] Onaolapo OJ, Odeniyi AO, Jonathan SO, Samuel MO, Amadiegwu D, Olawale A, et al. An Investigation of the Anti-Parkinsonism Potential of Co-enzyme Q10 and Co-enzyme Q10 /Levodopa-carbidopa Combination in Mice. Current Aging Science. 2021;14(1):62-75, Doi: https://doi.org/10.2174/1874609812666191023153724
- [54] Muthukumaran K, Leahy S, Harrison K, Sikorska M, Sandhu JK, Cohen J, et al. Orally delivered water soluble Coenzyme Q10 (Ubisol-Q10) blocks on-going neurodegeneration in rats exposed to paraquat: potential for therapeutic application in Parkinson’s disease. BMC Neuroscience. 2014;15(1):21, Doi: https://doi.org/10.1186/1471-2202-15-21
- [55] Li HN, Zimmerman M, Milledge GZ, Hou XL, Cheng J, Wang ZH, Li PA. Water-Soluble Coenzyme Q10 Reduces Rotenone-Induced Mitochondrial Fission. Neurochem Res. 2017 Apr;42(4):1096-1103. doi: 10.1007/s11064-016-2143-2.
- [56] Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG. Coenzyme Q10 and Parkinsonian Syndromes: A Systematic Review. J Pers Med. 2022 Jun 15;12(6):975. doi: 10.3390/jpm12060975.
- [57] Montero R, Yubero D, Salgado MC, González MJ, Campistol J, O'Callaghan MDM, Pineda M, Delgadillo V, Maynou J, Fernandez G, Montoya J, Ruiz-Pesini E, Meavilla S, Neergheen V, García-Cazorla A, Navas P, Hargreaves I, Artuch R. Plasma coenzyme Q10status is impaired in selected genetic conditions. Sci Rep. 2019 Jan 28;9(1):793. doi: 10.1038/s41598-018-37542-2.
- [58] Molyneux SL, Florkowski CM, Lever M, George PM. Biological variation of coenzyme Q10. Clin Chem. 2005 Feb;51(2):455-7. doi: 10.1373/clinchem.2004.043653.
- [59] Lin QS, Chen P, Wang WX, Lin CC, Zhou Y, Yu LH, Lin YX, Xu YF, Kang DZ. RIP1/RIP3/MLKL mediates dopaminergic neuron necroptosis in a mouse model of Parkinson disease. Lab Invest. 2020 Mar;100(3):503-511. doi: 10.1038/ s41374-019-0319-5.
- [60] Iannielli A, Bido S, Folladori L, Segnali A, Cancellieri C, Maresca A, et al. Pharmacological inhibition of necroptosis protects from dopaminergic neuronal cell death in Parkinson’s disease models. Cell reports. 2018;22(8):2066-79, Doi: https://doi.org/10.1016/j.celrep.2018.01.089
- [61] Samson AL, Zhang Y, Geoghegan ND, Gavin XJ, Davies KA, Mlodzianoski MJ, Whitehead LW, Frank D, Garnish SE, Fitzgibbon C, Hempel A, Young SN, Jacobsen AV, Cawthorne W, Petrie EJ, Faux MC, Shield-Artin K, Lalaoui N, Hildebrand JM, Silke J, Rogers KL, Lessene G, Hawkins ED, Murphy JM. MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis. Nat Commun. 2020 Jun 19;11(1):3151. doi: 10.1038/s41467-020-16887-1.
- [62] Xiang H. The interplay between α-synuclein aggregation and necroptosis in Parkinson’s disease: a spatiotemporal perspective. Frontiers in neuroscience. 2025; 19:1567445, Doi: https://doi.org/10.3389/fnins.2025.1567445
- [63] Lee E, Hwang I, Park S, Hong S, Hwang B, Cho Y, et al. MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ. 2019 Jan;26(2):213-228. doi: 10.1038/s41418-018-0124-5.
- [64] Hosseini-Gerami L, Higgins IA, Collier DA, Laing E, Evans D, Broughton H, et al. Benchmarking causal reasoning algorithms for gene expression-based compound mechanism of action analysis. BMC Bioinformatics. 2023;24(1):154, Doi: https://doi.org/10.1186/s12859-023-05277-1
- [65] Stephenson J, Nutma E, van der Valk P, Amor SJI. Inflammation in CNS neurodegenerative diseases. 2018;154(2):204-19, Doi: https://doi.org/10.1111/imm.12922
- [66] Franco R, Li S, Rodriguez-Rocha H, Burns M, Panayiotidis MI. Molecular mechanisms of pesticide-induced neurotoxicity: Relevance to Parkinson's disease. Chemico-biological interactions. 2010;188(2):289-300, Doi: https://doi.org/10.1016/j.cbi.2010.06.003
- [67] Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R, Bezard E, et al. Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms. The Lancet Neurology. 2009;8(12):1128-39, Doi: https://doi.org/10.1016/s1474-4422(09)70293-5
- [68] Oliynyk Z, Rudyk M, Dovbynchuk T, Dzubenko N, Tolstanova G, Skivka L. Inflammatory hallmarks in 6-OHDA-and LPS-induced Parkinson's disease in rats. Brain, Behavior, & Immunity-Health. 2023; 30:100616, Doi: https://doi.org/10.1016/j.bbih.2023.100616
- [69] Schwab BL, Guerini D, Didszun C, Bano D, Ferrando-May E, Fava E, et al. Cleavage of plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death & Differentiation. 2002;9(8):818-31, Doi: https://doi.org/10.1038/sj.cdd.4401042
- [70] Fleming SM, Delville Y, Schallert T. An intermittent, controlled-rate, slow progressive degeneration model of Parkinson’s disease: antiparkinson effects of Sinemet and protective effects of methylphenidate. Behavioural Brain Research. 2005;156(2):201-13, Doi: https://doi.org/10.1016/j.bbr.2004.05.024
- [71] Stefanova NA, Kozhevnikova OS, Vitovtov AO, Maksimova KY, Logvinov SV, Rudnitskaya EA, Korbolina EE, Muraleva NA, Kolosova NG. Senescence-accelerated OXYS rats: a model of age-related cognitive decline with relevance to abnormalities in Alzheimer disease. Cell Cycle. 2014;13(6):898-909. doi: 10.4161/cc.28255.
- [72] Disterhoft JF, Moyer JR Jr, Thompson LT. The calcium rationale in aging and Alzheimer's disease. Evidence from an animal model of normal aging. Ann N Y Acad Sci. 1994 Dec 15; 747:382-406. doi: 10.1111/j.1749-6632. 1994. tb44424.x.
- [73] Duñabeitia I, González-Devesa D, Blanco-Martínez N, Ayán-Pérez C. The effects of stretching in Parkinson's disease: A systematic review of randomized controlled trials. Parkinsonism & Related Disorders. 2025 ;134:107796, Doi: https://doi.org/10.1016/j.parkreldis.2025.107796
- [74] Fontanesi C, Kvint S, Frazzitta G, Bera R, Ferrazzoli D, Di Rocco A, Rebholz H, Friedman E, Pezzoli G, Quartarone A, Wang HY, Ghilardi MF. Intensive Rehabilitation Enhances Lymphocyte BDNF-TrkB Signaling in Patients with Parkinson's Disease. Neurorehabil Neural Repair. 2016 Jun;30(5):411-8. doi: 10.1177/1545968315600272.
- [75] Real CC, Ferreira AF, Chaves-Kirsten GP, Torrão AS, Pires RS, Britto LR. BDNF receptor blockade hinders the beneficial effects of exercise in a rat model of Parkinson's disease. Neuroscience. 2013 May 1; 237:118-29. doi: 10.1016/j.neuroscience.2013.01.060.
- [76] Stahl K, Mylonakou MN, Skare Ø, Amiry-Moghaddam M, Torp R. Cytoprotective effects of growth factors: BDNF more potent than GDNF in an organotypic culture model of Parkinson's disease. Brain Res. 2011 Mar 10; 1378:105-18. doi: 10.1016/j.brainres.2010.1 2.090.
- [77] Segura C, Eraso M, Bonilla J, Mendivil CO, Santiago G, Useche N, et al. Effect of a high-intensity tandem bicycle exercise program on clinical severity, functional magnetic resonance imaging, and plasma biomarkers in Parkinson's disease. Front Neurol. 2020 Jul 24; 11:656. doi: 10.3389/fneur.2020.00656.
- [78] Schaeffer E, Roeben B, Granert O, Hanert A, Liepelt‐Scarfone I, Leks E, et al. Effects of exergaming on hippocampal volume and brain‐derived neurotrophic factor levels in Parkinson’s disease. 2022;29(2):441-9, Doi: https://doi.org/10.1111/ene.15165
- [79] Kim S-E, Ko I-G, Shin M-S, Kim C-J, Jin B-K, Hong H-P, et al. Treadmill exercise and wheel exercise enhance expressions of neutrophic factors in the hippocampus of lipopolysaccharide-injected rats. Neurosci Lett. 2013 Mar 22; 538:54-9. doi: 10.1016/j. neulet.2013.01.039.
- [80] Fredriksson A, Stigsdotter IM, Hurtig A, Ewalds-Kvist B, Archer TJJoNT. Running wheel activity restores MPTP-induced functional deficits. J Neural Transm (Vienna). 2011 Mar;118(3):407-20. doi: 10.1007/s00702-010-0474-8.
- [81] Khobkhun F, Hollands K, Hollands M, Ajjimaporn A. Effectiveness of exercise-based rehabilitation for the treatment of axial rigidity in people with Parkinson’s disease: A Scoping Review. Physical Therapy Reviews. 2020;25(4):283-91, Doi: https://doi.org/10.1080/10833196.2020.1816127
- [82] Any DA, Mirela D. Physical exercise moderates the relationship between the quality of life and cognitive oucomes in parkinson’s disease patients. Science, Movement and Health. 2020;20(2):209-14.
- [83] Umer H, Sharif A, Khan HM, Anjum SMM, Akhtar B, Ali S, et al. Mitigation of Neuroinflammation and Oxidative Stress in Rotenone-Induced Parkinson Mouse Model through Liposomal Coenzyme-Q10 Intervention: A Comprehensive In-vivo Study. Inflammation. 2025. Jan 21. doi: 10.1007/s10753-025-02237-0.
- [84] Ghasemloo E, Mostafavi H, Hosseini M, Forouzandeh M, Eskandari M, Mousavi SS. Neuroprotective effects of coenzyme Q10 in Parkinson's model via a novel Q10/miR-149-5p/MMPs pathway. Metabolic Brain Disease. 2021;36(7):2089-100, Doi: https://doi.org/10.1007/s11011-021-00795-4
- [85] Aravindan A, Newell ME, Halden RU. Literature review and meta-analysis of environmental toxins associated with increased risk of Parkinson's disease. Sci Total Environ. 2024 Jun 25; 931:172838. doi: 10.1016/j. scitotenv.2024.172838.
|